Normalized defining polynomial
\( x^{22} - 5 x^{21} - 11 x^{20} + 93 x^{19} - 25 x^{18} - 607 x^{17} + 616 x^{16} + 2224 x^{15} - 4041 x^{14} - 2772 x^{13} + 11203 x^{12} - 4782 x^{11} - 11283 x^{10} + 14512 x^{9} - 1218 x^{8} - 9343 x^{7} + 6225 x^{6} + 273 x^{5} - 1230 x^{4} + 85 x^{3} + 86 x^{2} + x - 1 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-178176446876650757881387571453423=-\,23^{20}\cdot 47^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{12457443373063050850991} a^{21} + \frac{5220876777715281011545}{12457443373063050850991} a^{20} - \frac{5923550984258736859667}{12457443373063050850991} a^{19} + \frac{4129958098181340229464}{12457443373063050850991} a^{18} - \frac{4538681119477797049814}{12457443373063050850991} a^{17} + \frac{4115512379786764917007}{12457443373063050850991} a^{16} + \frac{6006540386844578269204}{12457443373063050850991} a^{15} - \frac{1557641598586730948643}{12457443373063050850991} a^{14} + \frac{4255468952783677116598}{12457443373063050850991} a^{13} + \frac{2711606515793735763356}{12457443373063050850991} a^{12} - \frac{2335458462160339781986}{12457443373063050850991} a^{11} + \frac{1616262724704714800821}{12457443373063050850991} a^{10} + \frac{5837663066819391030604}{12457443373063050850991} a^{9} - \frac{1231038128234335447977}{12457443373063050850991} a^{8} - \frac{48325913715575415515}{12457443373063050850991} a^{7} - \frac{6076482190568765026649}{12457443373063050850991} a^{6} - \frac{3888965959314546415767}{12457443373063050850991} a^{5} + \frac{613252159676558372174}{12457443373063050850991} a^{4} + \frac{2381964062398530217399}{12457443373063050850991} a^{3} + \frac{2102249033503935379842}{12457443373063050850991} a^{2} - \frac{1847023254686097062126}{12457443373063050850991} a - \frac{6188436135022238636089}{12457443373063050850991}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $18$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 262731486.109 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 22528 |
| The 208 conjugacy class representatives for t22n28 are not computed |
| Character table for t22n28 is not computed |
Intermediate fields
| \(\Q(\zeta_{23})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ | $22$ | $22$ | ${\href{/LocalNumberField/17.11.0.1}{11} }^{2}$ | $22$ | R | $22$ | $22$ | ${\href{/LocalNumberField/37.11.0.1}{11} }^{2}$ | $22$ | $22$ | R | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.11.0.1}{11} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 23 | Data not computed | ||||||
| 47 | Data not computed | ||||||