Normalized defining polynomial
\( x^{22} - 33 x^{20} + 429 x^{18} - 176 x^{17} - 4081 x^{16} + 5852 x^{15} + 47674 x^{14} - 68332 x^{13} - 459998 x^{12} + 333988 x^{11} + 2587090 x^{10} - 470580 x^{9} - 7832726 x^{8} - 1357004 x^{7} + 11956197 x^{6} + 4761548 x^{5} - 7915633 x^{4} - 4092132 x^{3} + 1244177 x^{2} + 607860 x + 45207 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-172829305015806894633987334416888833769472=-\,2^{30}\cdot 7^{11}\cdot 11^{22}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $74.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{8} - \frac{1}{4} a^{4} + \frac{1}{4}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{9} - \frac{1}{4} a^{5} + \frac{1}{4} a$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{10} - \frac{1}{4} a^{6} + \frac{1}{4} a^{2}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} + \frac{1}{4} a^{2} + \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{8} a^{16} - \frac{1}{4} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{3}{8}$, $\frac{1}{88} a^{17} + \frac{1}{88} a^{16} - \frac{3}{44} a^{15} + \frac{3}{44} a^{14} - \frac{1}{44} a^{13} - \frac{3}{44} a^{12} - \frac{1}{44} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{7} - \frac{9}{44} a^{6} - \frac{9}{44} a^{5} + \frac{21}{44} a^{4} - \frac{21}{44} a^{3} - \frac{15}{44} a^{2} - \frac{13}{88} a + \frac{3}{88}$, $\frac{1}{88} a^{18} + \frac{1}{22} a^{16} - \frac{5}{44} a^{15} - \frac{1}{11} a^{14} - \frac{1}{22} a^{13} + \frac{1}{22} a^{12} + \frac{1}{44} a^{11} - \frac{1}{4} a^{10} - \frac{9}{44} a^{7} - \frac{7}{22} a^{5} - \frac{5}{11} a^{4} + \frac{17}{44} a^{3} - \frac{27}{88} a^{2} + \frac{2}{11} a + \frac{1}{11}$, $\frac{1}{88} a^{19} - \frac{3}{88} a^{16} - \frac{3}{44} a^{15} - \frac{3}{44} a^{14} - \frac{5}{44} a^{13} + \frac{1}{22} a^{12} + \frac{1}{11} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{9}{44} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{17}{44} a^{5} - \frac{3}{11} a^{4} - \frac{13}{88} a^{3} + \frac{13}{44} a^{2} - \frac{3}{44} a - \frac{23}{88}$, $\frac{1}{88} a^{20} - \frac{3}{88} a^{16} - \frac{1}{44} a^{15} + \frac{1}{11} a^{14} - \frac{1}{44} a^{13} - \frac{5}{44} a^{12} - \frac{3}{44} a^{11} - \frac{9}{44} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} + \frac{5}{44} a^{5} + \frac{25}{88} a^{4} - \frac{17}{44} a^{3} - \frac{1}{11} a^{2} + \frac{13}{44} a + \frac{9}{88}$, $\frac{1}{12451273033062451820128166197119774033881172780643649064} a^{21} - \frac{260912403063087037409440352457591384217418788249453}{47163913004024438712606690140605204673792321138801701} a^{20} - \frac{2505971158139844540820297911048003224622278227770449}{2075212172177075303354694366186629005646862130107274844} a^{19} - \frac{2627577556521724891238015741593102808984444749158779}{2075212172177075303354694366186629005646862130107274844} a^{18} + \frac{7492316877368389739007550273106801284902624575805747}{4150424344354150606709388732373258011293724260214549688} a^{17} + \frac{90483216072628952888702613345136205432849019214960159}{12451273033062451820128166197119774033881172780643649064} a^{16} + \frac{43478821944519371000852516144901196086323580895413275}{3112818258265612955032041549279943508470293195160912266} a^{15} - \frac{4837800222063202000939851510289958320873651241401345}{3112818258265612955032041549279943508470293195160912266} a^{14} - \frac{364868881883020390797440264811763500084109699693703471}{3112818258265612955032041549279943508470293195160912266} a^{13} - \frac{560037506965249154924114810686376334364752637527890243}{6225636516531225910064083098559887016940586390321824532} a^{12} - \frac{133308814966720594617954875065460425000655614770383545}{1556409129132806477516020774639971754235146597580456133} a^{11} - \frac{225263864905164874481751372729127162902056000489969485}{1556409129132806477516020774639971754235146597580456133} a^{10} - \frac{5224716063151757206545596143781469615837332196947617}{282983478024146632275640140843631228042753926832810206} a^{9} + \frac{1183255342924195372664709561164968129636174132975881}{8504967918758505341617599861420610678880582500439651} a^{8} - \frac{41445000039630168348465474983370986753990951938143833}{3112818258265612955032041549279943508470293195160912266} a^{7} + \frac{346866408667828497301548610519570752908632845906123656}{1556409129132806477516020774639971754235146597580456133} a^{6} - \frac{170632032133901606755515413816093232061206755904982475}{4150424344354150606709388732373258011293724260214549688} a^{5} - \frac{2343259800691629039877669863486981170364334955843299301}{6225636516531225910064083098559887016940586390321824532} a^{4} - \frac{2253911014689949809132040411215691782533763182425769621}{6225636516531225910064083098559887016940586390321824532} a^{3} - \frac{5621652009083932709598717254437026243674741354293211}{34019871675034021366470399445682442715522330001758604} a^{2} - \frac{5447030943965331843919432822007549743238324982527957785}{12451273033062451820128166197119774033881172780643649064} a + \frac{1503266886602043268896927306469782440297281056112382523}{4150424344354150606709388732373258011293724260214549688}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $18$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 80132486392700 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 225280 |
| The 88 conjugacy class representatives for t22n37 are not computed |
| Character table for t22n37 is not computed |
Intermediate fields
| 11.11.4910318845910094848.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | R | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | $20{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| $11$ | 11.11.11.6 | $x^{11} + 11 x + 11$ | $11$ | $1$ | $11$ | $F_{11}$ | $[11/10]_{10}$ |
| 11.11.11.6 | $x^{11} + 11 x + 11$ | $11$ | $1$ | $11$ | $F_{11}$ | $[11/10]_{10}$ | |