Normalized defining polynomial
\( x^{22} - 7 x^{21} - 35 x^{20} + 270 x^{19} + 645 x^{18} - 4209 x^{17} - 9252 x^{16} + 31050 x^{15} + 96990 x^{14} - 65105 x^{13} - 614131 x^{12} - 561998 x^{11} + 1988085 x^{10} + 4067340 x^{9} - 2442075 x^{8} - 9864030 x^{7} - 410850 x^{6} + 10078335 x^{5} + 2192040 x^{4} - 3755745 x^{3} - 571725 x^{2} + 123390 x - 4545 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[16, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-168074113321603771232534997081756591796875=-\,3^{20}\cdot 5^{20}\cdot 11^{17}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $74.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{3} a^{17} - \frac{1}{3} a^{16} + \frac{1}{3} a^{15} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6}$, $\frac{1}{3} a^{18} + \frac{1}{3} a^{15} + \frac{1}{3} a^{9} + \frac{1}{3} a^{6}$, $\frac{1}{3} a^{19} + \frac{1}{3} a^{16} + \frac{1}{3} a^{10} + \frac{1}{3} a^{7}$, $\frac{1}{33} a^{20} + \frac{5}{33} a^{19} + \frac{2}{33} a^{17} - \frac{2}{33} a^{16} + \frac{7}{33} a^{15} + \frac{4}{11} a^{14} - \frac{4}{11} a^{13} - \frac{4}{11} a^{12} - \frac{5}{33} a^{11} + \frac{8}{33} a^{10} + \frac{5}{11} a^{9} + \frac{2}{33} a^{8} - \frac{8}{33} a^{7} + \frac{10}{33} a^{6} + \frac{4}{11} a^{5} + \frac{5}{11} a^{4} + \frac{5}{11} a^{3} - \frac{5}{11} a^{2} - \frac{3}{11} a + \frac{1}{11}$, $\frac{1}{1523165432889913743535223012291763782391036113375524640896803} a^{21} - \frac{3679931265598081809728477220581764023924711376639404976574}{1523165432889913743535223012291763782391036113375524640896803} a^{20} - \frac{20520190140775798608793017185774229714588093450041958159439}{507721810963304581178407670763921260797012037791841546965601} a^{19} + \frac{68646966547706899036755707328209407725419785946769685097522}{507721810963304581178407670763921260797012037791841546965601} a^{18} + \frac{15558310314230933083522791272960000832412956806608641111798}{507721810963304581178407670763921260797012037791841546965601} a^{17} - \frac{706070912159461469331038711870169875030937405407482107634565}{1523165432889913743535223012291763782391036113375524640896803} a^{16} + \frac{26278885403380587646326131897827260368371268958296318407462}{217595061841416249076460430327394826055862301910789234413829} a^{15} + \frac{69695930469377030994825185724819891689870751967090005167831}{507721810963304581178407670763921260797012037791841546965601} a^{14} + \frac{151775482435750512377314289656558812662686098567429260638505}{507721810963304581178407670763921260797012037791841546965601} a^{13} - \frac{50231234361262966219237057210830603240906798327350537473187}{1523165432889913743535223012291763782391036113375524640896803} a^{12} - \frac{450187946912708024013084566412286569631765018211052602223536}{1523165432889913743535223012291763782391036113375524640896803} a^{11} + \frac{277332213570409401293489085310443911377614577941904446702}{1096591384369988296281658036207173349453589714453221483727} a^{10} + \frac{43514454362702560473316671284557245501337644288595923602408}{507721810963304581178407670763921260797012037791841546965601} a^{9} + \frac{31187106700036297920504363761390497619993301797195533925095}{72531687280472083025486810109131608685287433970263078137943} a^{8} - \frac{746981677383427073865140623991831501788099019691580611554645}{1523165432889913743535223012291763782391036113375524640896803} a^{7} + \frac{196569484917286302297049363421322929262952483233570457494346}{1523165432889913743535223012291763782391036113375524640896803} a^{6} - \frac{24898592679109679576340539400072156251122723500230790175680}{72531687280472083025486810109131608685287433970263078137943} a^{5} + \frac{210960943856510604046281632348055974053814785654748601664813}{507721810963304581178407670763921260797012037791841546965601} a^{4} + \frac{125423545843078550983428609092988624177212789213431149431505}{507721810963304581178407670763921260797012037791841546965601} a^{3} - \frac{242207460594017713477970801255365160586999293874785513670425}{507721810963304581178407670763921260797012037791841546965601} a^{2} - \frac{229469478258439863853367307817270203414828171144995949865755}{507721810963304581178407670763921260797012037791841546965601} a - \frac{13098353621577299290580463108193136340376796290952725071120}{507721810963304581178407670763921260797012037791841546965601}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $18$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 67003658567600 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 112640 |
| The 80 conjugacy class representatives for t22n36 are not computed |
| Character table for t22n36 is not computed |
Intermediate fields
| 11.11.123610132462587890625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }$ | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | $22$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.11.10.1 | $x^{11} - 3$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ |
| 3.11.10.1 | $x^{11} - 3$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ | |
| $5$ | 5.11.10.1 | $x^{11} - 5$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ |
| 5.11.10.1 | $x^{11} - 5$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ | |
| $11$ | 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |