Normalized defining polynomial
\( x^{22} - 3 x^{21} - 29 x^{20} + 26 x^{19} + 420 x^{18} + 885 x^{17} - 3122 x^{16} - 19486 x^{15} - 3640 x^{14} + 188637 x^{13} + 243555 x^{12} - 1052571 x^{11} - 1941345 x^{10} + 3343356 x^{9} + 7877194 x^{8} - 4368623 x^{7} - 16343655 x^{6} - 3154416 x^{5} + 10462530 x^{4} + 4628676 x^{3} - 1677053 x^{2} - 994739 x - 67717 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(95495132016543203413964761918289025880897=97\cdot 74843^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $72.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $97, 74843$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{30271016867807771847093904367982560008944096843511511795865317833136917} a^{21} + \frac{11865429643997449853397107611047144397924306373212066298336645100691830}{30271016867807771847093904367982560008944096843511511795865317833136917} a^{20} + \frac{14444588336147877480072058187433179902184601882952601658899086285959190}{30271016867807771847093904367982560008944096843511511795865317833136917} a^{19} + \frac{395195896006828695094184260354648912983732411810612656019320450757756}{30271016867807771847093904367982560008944096843511511795865317833136917} a^{18} - \frac{9814197931029708722183235544672208543352601218343648396044618299151150}{30271016867807771847093904367982560008944096843511511795865317833136917} a^{17} - \frac{10594812701994724235756358351558798048848609823266548189610650469351785}{30271016867807771847093904367982560008944096843511511795865317833136917} a^{16} - \frac{10256815795921199564872091587626354218850844010525961525792365804061769}{30271016867807771847093904367982560008944096843511511795865317833136917} a^{15} - \frac{5075504914707678793043301765081806199760740750830026442137324406589098}{30271016867807771847093904367982560008944096843511511795865317833136917} a^{14} - \frac{8229444116998628108088362967222742040300839482021624159962940378275712}{30271016867807771847093904367982560008944096843511511795865317833136917} a^{13} + \frac{5267872993605237081001104208993111360619107297874169054126374327041012}{30271016867807771847093904367982560008944096843511511795865317833136917} a^{12} - \frac{808347545760247596537599557627269960688021802297184656058412204940217}{30271016867807771847093904367982560008944096843511511795865317833136917} a^{11} + \frac{12154984939733342559800287623461542176837260390231318376214587078024451}{30271016867807771847093904367982560008944096843511511795865317833136917} a^{10} + \frac{9178819446444439102759564357149451687027830659868650880763356822080795}{30271016867807771847093904367982560008944096843511511795865317833136917} a^{9} - \frac{8607805480415503418980544768247854596975285477431640752619402144151814}{30271016867807771847093904367982560008944096843511511795865317833136917} a^{8} + \frac{14698734048542039987306683950940060678695226156682584701320599034276885}{30271016867807771847093904367982560008944096843511511795865317833136917} a^{7} + \frac{11132534048503622208232388580599393095755201505173583763461702222908413}{30271016867807771847093904367982560008944096843511511795865317833136917} a^{6} - \frac{11440815446013410125266325661811890868081893129287892592560828889667986}{30271016867807771847093904367982560008944096843511511795865317833136917} a^{5} - \frac{10897503805685479619373713912138206150633942163065136739844088244502997}{30271016867807771847093904367982560008944096843511511795865317833136917} a^{4} + \frac{13805067724745515778491238007027062581109460817018848435416114721906221}{30271016867807771847093904367982560008944096843511511795865317833136917} a^{3} + \frac{11605763480679752798437935359072496179677700468192245574109146551512279}{30271016867807771847093904367982560008944096843511511795865317833136917} a^{2} - \frac{13968899415345119932991096845786548819990975403361811694038271515311420}{30271016867807771847093904367982560008944096843511511795865317833136917} a + \frac{1010234332542855038768028770272675364400100682139666725279106943382867}{30271016867807771847093904367982560008944096843511511795865317833136917}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 13259168046400 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1351680 |
| The 112 conjugacy class representatives for t22n42 are not computed |
| Character table for t22n42 is not computed |
Intermediate fields
| 11.11.31376518243389673201.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }$ | $22$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | $22$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $97$ | 97.2.1.2 | $x^{2} + 485$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 97.5.0.1 | $x^{5} - x + 5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 97.5.0.1 | $x^{5} - x + 5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 97.10.0.1 | $x^{10} - 2 x + 57$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| 74843 | Data not computed | ||||||