Properties

Label 22.14.9447683956...4896.1
Degree $22$
Signature $[14, 4]$
Discriminant $2^{33}\cdot 7^{2}\cdot 97\cdot 601\cdot 21863\cdot 17802497\cdot 98924197902511$
Root discriminant $80.90$
Ramified primes $2, 7, 97, 601, 21863, 17802497, 98924197902511$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 22T57

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 2, -21, -32, 193, 192, -983, -496, 2913, 344, -4994, 730, 4915, -1626, -2700, 1304, 754, -502, -75, 90, -5, -6, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^22 - 6*x^21 - 5*x^20 + 90*x^19 - 75*x^18 - 502*x^17 + 754*x^16 + 1304*x^15 - 2700*x^14 - 1626*x^13 + 4915*x^12 + 730*x^11 - 4994*x^10 + 344*x^9 + 2913*x^8 - 496*x^7 - 983*x^6 + 192*x^5 + 193*x^4 - 32*x^3 - 21*x^2 + 2*x + 1)
 
gp: K = bnfinit(x^22 - 6*x^21 - 5*x^20 + 90*x^19 - 75*x^18 - 502*x^17 + 754*x^16 + 1304*x^15 - 2700*x^14 - 1626*x^13 + 4915*x^12 + 730*x^11 - 4994*x^10 + 344*x^9 + 2913*x^8 - 496*x^7 - 983*x^6 + 192*x^5 + 193*x^4 - 32*x^3 - 21*x^2 + 2*x + 1, 1)
 

Normalized defining polynomial

\( x^{22} - 6 x^{21} - 5 x^{20} + 90 x^{19} - 75 x^{18} - 502 x^{17} + 754 x^{16} + 1304 x^{15} - 2700 x^{14} - 1626 x^{13} + 4915 x^{12} + 730 x^{11} - 4994 x^{10} + 344 x^{9} + 2913 x^{8} - 496 x^{7} - 983 x^{6} + 192 x^{5} + 193 x^{4} - 32 x^{3} - 21 x^{2} + 2 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $22$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[14, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(944768395651470345630534739134881931984896=2^{33}\cdot 7^{2}\cdot 97\cdot 601\cdot 21863\cdot 17802497\cdot 98924197902511\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $80.90$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 7, 97, 601, 21863, 17802497, 98924197902511$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $17$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 24256694887400 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

22T57:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 3186701844480000
The 1652 conjugacy class representatives for t22n57 are not computed
Character table for t22n57 is not computed

Intermediate fields

\(\Q(\sqrt{2}) \)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 44 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ $20{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ R ${\href{/LocalNumberField/11.14.0.1}{14} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ ${\href{/LocalNumberField/17.11.0.1}{11} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{3}$ $20{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/29.14.0.1}{14} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ $16{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ ${\href{/LocalNumberField/41.11.0.1}{11} }{,}\,{\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.9.0.1}{9} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$7$$\Q_{7}$$x + 2$$1$$1$$0$Trivial$[\ ]$
7.3.0.1$x^{3} - x + 2$$1$$3$$0$$C_3$$[\ ]^{3}$
7.3.2.2$x^{3} - 7$$3$$1$$2$$C_3$$[\ ]_{3}$
7.4.0.1$x^{4} + x^{2} - 3 x + 5$$1$$4$$0$$C_4$$[\ ]^{4}$
7.11.0.1$x^{11} - 2 x + 4$$1$$11$$0$$C_{11}$$[\ ]^{11}$
$97$$\Q_{97}$$x + 5$$1$$1$$0$Trivial$[\ ]$
$\Q_{97}$$x + 5$$1$$1$$0$Trivial$[\ ]$
$\Q_{97}$$x + 5$$1$$1$$0$Trivial$[\ ]$
$\Q_{97}$$x + 5$$1$$1$$0$Trivial$[\ ]$
97.2.1.2$x^{2} + 485$$2$$1$$1$$C_2$$[\ ]_{2}$
97.4.0.1$x^{4} - x + 23$$1$$4$$0$$C_4$$[\ ]^{4}$
97.5.0.1$x^{5} - x + 5$$1$$5$$0$$C_5$$[\ ]^{5}$
97.7.0.1$x^{7} - x + 5$$1$$7$$0$$C_7$$[\ ]^{7}$
601Data not computed
21863Data not computed
17802497Data not computed
98924197902511Data not computed