Normalized defining polynomial
\( x^{22} - 58 x^{20} + 1489 x^{18} - 22320 x^{16} + 216663 x^{14} - 1424964 x^{12} + 6438231 x^{10} - 19757580 x^{8} + 39484992 x^{6} - 46601624 x^{4} + 25144376 x^{2} - 898976 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(935913315561691011495296728772277899111150948956615507594962340081318232064=2^{47}\cdot 3^{28}\cdot 7^{4}\cdot 13\cdot 23^{4}\cdot 137^{16}\cdot 2161\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $2557.31$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 13, 23, 137, 2161$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5}$, $\frac{1}{12} a^{18} - \frac{1}{4} a^{14} - \frac{1}{2} a^{12} + \frac{1}{4} a^{10} - \frac{1}{2} a^{8} + \frac{1}{4} a^{6} - \frac{1}{2} a^{4} + \frac{1}{3}$, $\frac{1}{12} a^{19} - \frac{1}{4} a^{15} - \frac{1}{2} a^{13} + \frac{1}{4} a^{11} - \frac{1}{2} a^{9} + \frac{1}{4} a^{7} - \frac{1}{2} a^{5} + \frac{1}{3} a$, $\frac{1}{27000} a^{20} + \frac{467}{13500} a^{18} - \frac{129}{1000} a^{16} + \frac{77}{375} a^{14} + \frac{1937}{9000} a^{12} - \frac{69}{250} a^{10} + \frac{161}{1000} a^{8} - \frac{113}{2250} a^{6} + \frac{13}{150} a^{4} - \frac{43}{3375} a^{2} - \frac{1234}{3375}$, $\frac{1}{54000} a^{21} + \frac{467}{27000} a^{19} + \frac{371}{2000} a^{17} + \frac{77}{750} a^{15} - \frac{2563}{18000} a^{13} - \frac{69}{500} a^{11} + \frac{661}{2000} a^{9} + \frac{2137}{4500} a^{7} + \frac{22}{75} a^{5} + \frac{1666}{3375} a^{3} + \frac{2141}{6750} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10304301830700000000000000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 40874803200 |
| The 400 conjugacy class representatives for t22n52 are not computed |
| Character table for t22n52 is not computed |
Intermediate fields
| 11.7.63019333158425674204677255696384.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 44 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ | R | ${\href{/LocalNumberField/17.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | $18{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.8.21.22 | $x^{8} + 2 x^{6} + 4 x^{2} + 10$ | $8$ | $1$ | $21$ | $C_2 \wr C_2\wr C_2$ | $[2, 2, 3, 7/2, 7/2, 15/4]^{2}$ | |
| 2.12.24.424 | $x^{12} + 2 x^{10} + 4 x^{7} - 2 x^{6} + 4 x^{4} + 4 x^{3} - 2 x^{2} + 4 x + 2$ | $12$ | $1$ | $24$ | 12T149 | $[4/3, 4/3, 2, 7/3, 7/3, 3]_{3}^{2}$ | |
| 3 | Data not computed | ||||||
| $7$ | 7.7.0.1 | $x^{7} - x + 2$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 7.7.0.1 | $x^{7} - x + 2$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.9.0.1 | $x^{9} - 2 x + 2$ | $1$ | $9$ | $0$ | $C_9$ | $[\ ]^{9}$ | |
| 13.9.0.1 | $x^{9} - 2 x + 2$ | $1$ | $9$ | $0$ | $C_9$ | $[\ ]^{9}$ | |
| $23$ | 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.14.0.1 | $x^{14} - x + 7$ | $1$ | $14$ | $0$ | $C_{14}$ | $[\ ]^{14}$ | |
| 137 | Data not computed | ||||||
| 2161 | Data not computed | ||||||