Normalized defining polynomial
\( x^{22} - 6 x^{21} - 85 x^{20} + 456 x^{19} + 2554 x^{18} - 11784 x^{17} - 38526 x^{16} + 144516 x^{15} + 323265 x^{14} - 990414 x^{13} - 1608525 x^{12} + 4228056 x^{11} + 4901112 x^{10} - 11919636 x^{9} - 9151008 x^{8} + 22004508 x^{7} + 9743124 x^{6} - 25064112 x^{5} - 3630980 x^{4} + 14132688 x^{3} + 1997240 x^{2} - 2436432 x - 530108 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8328705687908829703976940241094560024838491340873309254929718613901312=2^{45}\cdot 3^{28}\cdot 7^{4}\cdot 23^{4}\cdot 137^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1507.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 23, 137$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5}$, $\frac{1}{8} a^{16} - \frac{1}{8} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{8} a^{17} - \frac{1}{8} a^{13} - \frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{96} a^{18} - \frac{1}{16} a^{17} - \frac{1}{32} a^{16} - \frac{1}{8} a^{15} - \frac{3}{32} a^{14} + \frac{1}{16} a^{13} - \frac{3}{32} a^{12} + \frac{1}{8} a^{11} - \frac{1}{8} a^{10} + \frac{1}{8} a^{9} + \frac{1}{8} a^{7} - \frac{1}{8} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a - \frac{11}{24}$, $\frac{1}{96} a^{19} - \frac{1}{32} a^{17} - \frac{1}{16} a^{16} - \frac{3}{32} a^{15} - \frac{3}{32} a^{13} + \frac{1}{16} a^{12} - \frac{1}{8} a^{11} + \frac{1}{8} a^{10} - \frac{1}{4} a^{9} + \frac{1}{8} a^{8} + \frac{1}{8} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} + \frac{1}{24} a + \frac{1}{4}$, $\frac{1}{432000} a^{20} - \frac{47}{72000} a^{19} + \frac{133}{43200} a^{18} - \frac{401}{14400} a^{17} - \frac{199}{18000} a^{16} + \frac{6317}{72000} a^{15} - \frac{827}{24000} a^{14} - \frac{983}{8000} a^{13} + \frac{7453}{144000} a^{12} + \frac{593}{6000} a^{11} + \frac{7223}{36000} a^{10} + \frac{57}{500} a^{9} - \frac{3269}{36000} a^{8} - \frac{809}{12000} a^{7} - \frac{951}{4000} a^{6} + \frac{3013}{9000} a^{5} - \frac{8161}{18000} a^{4} - \frac{109}{1125} a^{3} + \frac{49141}{108000} a^{2} - \frac{461}{1125} a + \frac{30169}{108000}$, $\frac{1}{14100367499027296139896309530000322720972545028176000} a^{21} + \frac{10327691698978512473393237492660791048883014417}{14100367499027296139896309530000322720972545028176000} a^{20} + \frac{32135107866832102491800658211570693324184354857}{881272968689206008743519345625020170060784064261000} a^{19} + \frac{55992926120973142949146705865359477639593971177}{44063648434460300437175967281251008503039203213050} a^{18} + \frac{125865354957482127011238500778524946789369078002959}{2350061249837882689982718255000053786828757504696000} a^{17} + \frac{23853938302306552100049799241975553744442648932913}{2350061249837882689982718255000053786828757504696000} a^{16} + \frac{66480858297684703409143596143461405348632741455213}{587515312459470672495679563750013446707189376174000} a^{15} - \frac{31052093323075368920326848150709177870006139026261}{391676874972980448330453042500008964471459584116000} a^{14} - \frac{469993300492685189080233646156887311574970779353153}{4700122499675765379965436510000107573657515009392000} a^{13} + \frac{26239191689554948180885320573920624016634015027879}{4700122499675765379965436510000107573657515009392000} a^{12} - \frac{3939236496170638060903941110976629946798964219847}{235006124983788268998271825500005378682875750469600} a^{11} + \frac{144546572040493810594188745716017128517939427142481}{1175030624918941344991359127500026893414378752348000} a^{10} - \frac{48375367534058256766179871609753004218849401341573}{1175030624918941344991359127500026893414378752348000} a^{9} - \frac{96482937993632326775767849735894687888530266943979}{587515312459470672495679563750013446707189376174000} a^{8} + \frac{43687121858732877306735952138365415732021250427289}{97919218743245112082613260625002241117864896029000} a^{7} - \frac{356950173681426724177833682161488374929004651440689}{1175030624918941344991359127500026893414378752348000} a^{6} - \frac{117180142430426526732671243317752498362449512514487}{587515312459470672495679563750013446707189376174000} a^{5} + \frac{263386242483101354370017467003156185982234457182717}{587515312459470672495679563750013446707189376174000} a^{4} - \frac{308176185611401927436112827849867578630067949031039}{705018374951364806994815476500016136048627251408800} a^{3} - \frac{1703387425062581364184350581141732757659732521366697}{3525091874756824034974077382500080680243136257044000} a^{2} + \frac{15353944680424701127718923452964245355273850251789}{141003674990272961398963095300003227209725450281760} a + \frac{693370457807847566190710507015708105461620820430131}{3525091874756824034974077382500080680243136257044000}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 18736455246300000000000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 39916800 |
| The 62 conjugacy class representatives for t22n46 are not computed |
| Character table for t22n46 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 11.7.63019333158425674204677255696384.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | R | $22$ | $18{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
| 2.8.18.53 | $x^{8} + 2 x^{6} + 4 x^{3} + 2$ | $8$ | $1$ | $18$ | $D_4\times C_2$ | $[2, 2, 3]^{2}$ | |
| 2.12.24.336 | $x^{12} + 4 x^{11} - 2 x^{10} + 4 x^{6} + 4 x^{5} + 4 x^{4} - 2 x^{2} + 4 x - 2$ | $12$ | $1$ | $24$ | $C_2 \times S_4$ | $[4/3, 4/3, 3]_{3}^{2}$ | |
| 3 | Data not computed | ||||||
| $7$ | 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.7.0.1 | $x^{7} - x + 2$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ | |
| 7.7.0.1 | $x^{7} - x + 2$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ | |
| $23$ | 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.7.0.1 | $x^{7} - x + 8$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ | |
| 23.7.0.1 | $x^{7} - x + 8$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ | |
| $137$ | $\Q_{137}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{137}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 137.5.4.1 | $x^{5} - 137$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 137.5.4.1 | $x^{5} - 137$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 137.5.4.1 | $x^{5} - 137$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 137.5.4.1 | $x^{5} - 137$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |