Normalized defining polynomial
\( x^{22} - 44 x^{20} - 66 x^{19} + 649 x^{18} + 2112 x^{17} - 1815 x^{16} - 20064 x^{15} - 31317 x^{14} + 33396 x^{13} + 179157 x^{12} + 228075 x^{11} + 12771 x^{10} - 323499 x^{9} - 376893 x^{8} + 26664 x^{7} + 352836 x^{6} + 134178 x^{5} - 129811 x^{4} - 61842 x^{3} + 21263 x^{2} + 7128 x - 1552 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7361918740189183054193252042326802122242321=3^{20}\cdot 11^{32}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $88.82$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{6} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{7} - \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{6} + \frac{1}{3}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{7} + \frac{1}{3} a$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{6} - \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{3} a^{15} + \frac{1}{3} a^{7} - \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{9} a^{16} + \frac{1}{9} a^{14} + \frac{1}{9} a^{12} + \frac{1}{9} a^{10} + \frac{1}{9} a^{8} + \frac{1}{9} a^{6} - \frac{2}{9} a^{4} - \frac{2}{9} a^{2} - \frac{2}{9}$, $\frac{1}{99} a^{17} + \frac{4}{99} a^{16} - \frac{8}{99} a^{15} + \frac{10}{99} a^{14} + \frac{16}{99} a^{13} + \frac{16}{99} a^{12} - \frac{8}{99} a^{11} - \frac{1}{9} a^{10} - \frac{1}{9} a^{9} - \frac{1}{9} a^{8} - \frac{4}{9} a^{7} - \frac{29}{99} a^{6} + \frac{16}{99} a^{5} + \frac{34}{99} a^{4} - \frac{26}{99} a^{3} - \frac{35}{99} a^{2} - \frac{35}{99} a - \frac{32}{99}$, $\frac{1}{99} a^{18} - \frac{2}{99} a^{16} + \frac{1}{11} a^{15} - \frac{2}{99} a^{14} - \frac{5}{33} a^{13} + \frac{16}{99} a^{12} - \frac{4}{33} a^{11} - \frac{1}{9} a^{10} - \frac{1}{9} a^{8} + \frac{5}{33} a^{7} + \frac{2}{9} a^{6} + \frac{1}{33} a^{5} - \frac{41}{99} a^{4} + \frac{4}{11} a^{3} - \frac{5}{99} a^{2} + \frac{1}{11} a - \frac{16}{33}$, $\frac{1}{99} a^{19} - \frac{5}{99} a^{16} + \frac{5}{33} a^{15} + \frac{16}{99} a^{14} + \frac{5}{33} a^{13} - \frac{2}{99} a^{12} + \frac{2}{33} a^{11} - \frac{1}{9} a^{10} + \frac{4}{99} a^{8} - \frac{1}{3} a^{7} - \frac{1}{9} a^{6} - \frac{14}{33} a^{5} + \frac{16}{99} a^{4} - \frac{8}{33} a^{3} + \frac{16}{99} a^{2} - \frac{19}{99} a + \frac{13}{99}$, $\frac{1}{99} a^{20} + \frac{2}{99} a^{16} + \frac{1}{11} a^{15} - \frac{1}{99} a^{14} + \frac{4}{33} a^{13} - \frac{13}{99} a^{12} + \frac{5}{33} a^{11} + \frac{1}{9} a^{10} + \frac{5}{33} a^{9} + \frac{1}{9} a^{8} + \frac{4}{9} a^{6} + \frac{10}{33} a^{5} + \frac{14}{99} a^{4} - \frac{5}{33} a^{3} - \frac{29}{99} a^{2} - \frac{10}{33} a + \frac{5}{99}$, $\frac{1}{164124495688716296738365537405322580960} a^{21} - \frac{161930466381500564269775142741286837}{41031123922179074184591384351330645240} a^{20} + \frac{854212873908788087810556929660839}{746020434948710439719843351842375368} a^{19} - \frac{188158083619994165864725902015774793}{82062247844358148369182768702661290480} a^{18} - \frac{11115243178778323917411653822435447}{18236055076524032970929504156146953440} a^{17} - \frac{299133438460248839930966200041472021}{41031123922179074184591384351330645240} a^{16} - \frac{1936212540350496558047881767567119021}{54708165229572098912788512468440860320} a^{15} + \frac{997578118157768416513163151392519191}{8206224784435814836918276870266129048} a^{14} - \frac{642616797542038614408858332971789053}{18236055076524032970929504156146953440} a^{13} + \frac{3115942187650670333243948134094218279}{20515561961089537092295692175665322620} a^{12} - \frac{4921550890086757724355942564298128473}{54708165229572098912788512468440860320} a^{11} - \frac{5781695963851282048780664980988640313}{164124495688716296738365537405322580960} a^{10} + \frac{1311506659709051552067528544668852761}{10941633045914419782557702493688172064} a^{9} - \frac{1447287973708010398617632619420814949}{14920408698974208794396867036847507360} a^{8} - \frac{4143236344230157871703201752832076809}{18236055076524032970929504156146953440} a^{7} + \frac{14765029717953504877546598380748582663}{41031123922179074184591384351330645240} a^{6} - \frac{575949796722255472587412563707983997}{2735408261478604945639425623422043016} a^{5} + \frac{26565495059414129661001296767912584729}{82062247844358148369182768702661290480} a^{4} + \frac{10559688866472188797936594914149162977}{32824899137743259347673107481064516192} a^{3} + \frac{5307493471348984340029176598356100183}{27354082614786049456394256234220430160} a^{2} - \frac{46027189885186116525323128460784412441}{164124495688716296738365537405322580960} a - \frac{9040337303049933609194947462735824821}{41031123922179074184591384351330645240}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 254265301808000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 56320 |
| The 40 conjugacy class representatives for t22n33 |
| Character table for t22n33 is not computed |
Intermediate fields
| 11.11.2713285598714072534889.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }{,}\,{\href{/LocalNumberField/2.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.11.10.1 | $x^{11} - 3$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ |
| 3.11.10.1 | $x^{11} - 3$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ | |
| $11$ | 11.11.16.4 | $x^{11} + 22 x^{6} + 11$ | $11$ | $1$ | $16$ | $C_{11}:C_5$ | $[8/5]_{5}$ |
| 11.11.16.4 | $x^{11} + 22 x^{6} + 11$ | $11$ | $1$ | $16$ | $C_{11}:C_5$ | $[8/5]_{5}$ |