Normalized defining polynomial
\( x^{22} - 66 x^{19} - 231 x^{18} + 1485 x^{16} + 10494 x^{15} + 17820 x^{14} - 37125 x^{13} - 139689 x^{12} - 1242 x^{11} + 3267 x^{10} - 2339172 x^{9} - 3977424 x^{8} + 6373620 x^{7} + 23097690 x^{6} + 23541111 x^{5} + 9752886 x^{4} + 812592 x^{3} - 477576 x^{2} - 109593 x - 6399 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7361918740189183054193252042326802122242321=3^{20}\cdot 11^{32}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $88.82$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6}$, $\frac{1}{3} a^{7}$, $\frac{1}{3} a^{8}$, $\frac{1}{3} a^{9}$, $\frac{1}{3} a^{10}$, $\frac{1}{99} a^{11} - \frac{3}{11}$, $\frac{1}{99} a^{12} - \frac{3}{11} a$, $\frac{1}{99} a^{13} - \frac{3}{11} a^{2}$, $\frac{1}{99} a^{14} - \frac{3}{11} a^{3}$, $\frac{1}{99} a^{15} - \frac{3}{11} a^{4}$, $\frac{1}{99} a^{16} - \frac{3}{11} a^{5}$, $\frac{1}{297} a^{17} - \frac{1}{11} a^{6}$, $\frac{1}{297} a^{18} - \frac{1}{11} a^{7}$, $\frac{1}{297} a^{19} - \frac{1}{11} a^{8}$, $\frac{1}{297} a^{20} - \frac{1}{11} a^{9}$, $\frac{1}{13288823903124400363922887448251517226810713360511} a^{21} + \frac{4131636423915723974709541380432066353850876911}{13288823903124400363922887448251517226810713360511} a^{20} - \frac{21557667950101011748877448530820955726544328724}{13288823903124400363922887448251517226810713360511} a^{19} - \frac{5906096409421284752386799894904950665246526215}{4429607967708133454640962482750505742270237786837} a^{18} + \frac{20690359108831043183223198657795089213795669140}{13288823903124400363922887448251517226810713360511} a^{17} + \frac{18691740880737261565201639531340989593763596731}{4429607967708133454640962482750505742270237786837} a^{16} - \frac{1803554528466300107943596012438632564259855870}{492178663078681494960106942527833971363359754093} a^{15} - \frac{10130024762534781108685100347891372498740053023}{4429607967708133454640962482750505742270237786837} a^{14} + \frac{1687249205996027770160412589042031563082522384}{402691633428012132240087498431864158388203435167} a^{13} - \frac{200169860636085120905478095661778751237846327}{134230544476004044080029166143954719462734478389} a^{12} - \frac{5349708665746328475850599702172937564993402809}{4429607967708133454640962482750505742270237786837} a^{11} + \frac{53434930634400676932990572788204973095785025040}{1476535989236044484880320827583501914090079262279} a^{10} + \frac{176316788137309285551637434203189821633328057407}{1476535989236044484880320827583501914090079262279} a^{9} - \frac{208895892638561398461280264173725512148912403431}{1476535989236044484880320827583501914090079262279} a^{8} - \frac{22308597462027280923523094049633931167938931125}{1476535989236044484880320827583501914090079262279} a^{7} - \frac{92529617111419845006648913800462086978814854083}{1476535989236044484880320827583501914090079262279} a^{6} + \frac{153550547891103748460401114202561324007254003389}{492178663078681494960106942527833971363359754093} a^{5} - \frac{41996941698531468780785802350009935641119196314}{492178663078681494960106942527833971363359754093} a^{4} - \frac{8700253193394482952523609241150132392534829250}{492178663078681494960106942527833971363359754093} a^{3} - \frac{5578544704262294670309103988199523248611983625}{44743514825334681360009722047984906487578159463} a^{2} - \frac{3469238209004412352994876073904889184716939331}{44743514825334681360009722047984906487578159463} a - \frac{61821157701948506532907099625226021872555800}{492178663078681494960106942527833971363359754093}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 184180716281000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 56320 |
| The 40 conjugacy class representatives for t22n33 |
| Character table for t22n33 is not computed |
Intermediate fields
| 11.11.2713285598714072534889.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }{,}\,{\href{/LocalNumberField/2.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.11.10.1 | $x^{11} - 3$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ |
| 3.11.10.1 | $x^{11} - 3$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ | |
| $11$ | 11.11.16.4 | $x^{11} + 22 x^{6} + 11$ | $11$ | $1$ | $16$ | $C_{11}:C_5$ | $[8/5]_{5}$ |
| 11.11.16.4 | $x^{11} + 22 x^{6} + 11$ | $11$ | $1$ | $16$ | $C_{11}:C_5$ | $[8/5]_{5}$ |