Normalized defining polynomial
\( x^{22} - 33 x^{20} + 275 x^{18} + 1485 x^{16} - 28666 x^{14} + 60214 x^{12} + 517242 x^{10} - 1742862 x^{8} - 1958407 x^{6} + 5945995 x^{4} + 5048131 x^{2} - 209503 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(691317220063227578535949337667555335077888=2^{32}\cdot 7^{11}\cdot 11^{22}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $79.76$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{8} - \frac{1}{4} a^{4} + \frac{1}{4}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{9} - \frac{1}{4} a^{5} + \frac{1}{4} a$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{10} - \frac{1}{4} a^{6} + \frac{1}{4} a^{2}$, $\frac{1}{8} a^{15} - \frac{1}{8} a^{14} - \frac{1}{8} a^{13} - \frac{1}{8} a^{12} - \frac{1}{8} a^{11} - \frac{1}{8} a^{10} + \frac{1}{8} a^{9} - \frac{1}{8} a^{8} - \frac{1}{8} a^{7} + \frac{1}{8} a^{6} - \frac{3}{8} a^{5} + \frac{1}{8} a^{4} + \frac{1}{8} a^{3} + \frac{1}{8} a^{2} + \frac{3}{8} a + \frac{1}{8}$, $\frac{1}{8} a^{16} - \frac{1}{4} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{3}{8}$, $\frac{1}{8} a^{17} - \frac{1}{4} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{3}{8} a - \frac{1}{2}$, $\frac{1}{8} a^{18} - \frac{1}{4} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} + \frac{1}{8} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{8} a^{19} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{8} a^{3} + \frac{1}{4} a^{2} - \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{1455291952661377993899297830728} a^{20} + \frac{65736171555721671494037186619}{1455291952661377993899297830728} a^{18} + \frac{20726543254255414821933597845}{727645976330688996949648915364} a^{16} - \frac{88890591596775148913678088213}{727645976330688996949648915364} a^{14} - \frac{29871618275380934746422387873}{363822988165344498474824457682} a^{12} + \frac{80775287231250228149660093371}{363822988165344498474824457682} a^{10} + \frac{150594663855752728807596434447}{727645976330688996949648915364} a^{8} + \frac{31285557019944632514477732195}{727645976330688996949648915364} a^{6} - \frac{104191054090151957595570600377}{1455291952661377993899297830728} a^{4} - \frac{29380622265353092274045331555}{1455291952661377993899297830728} a^{2} - \frac{14575125090432525859961812889}{363822988165344498474824457682}$, $\frac{1}{503531015620836785889157049431888} a^{21} - \frac{1}{2910583905322755987798595661456} a^{20} + \frac{1761027279563247203502434767299}{251765507810418392944578524715944} a^{19} + \frac{58087661263475288871687521111}{1455291952661377993899297830728} a^{18} + \frac{17686868012527719005672853393267}{503531015620836785889157049431888} a^{17} + \frac{140458407574161419593545033151}{2910583905322755987798595661456} a^{16} + \frac{4594297803309754781097172791339}{125882753905209196472289262357972} a^{15} - \frac{23255225621474275080933535157}{363822988165344498474824457682} a^{14} + \frac{13583618819649656823313072387329}{251765507810418392944578524715944} a^{13} - \frac{122168257531910379744567453095}{1455291952661377993899297830728} a^{12} + \frac{2496192813731700478779895136039}{62941376952604598236144631178986} a^{11} + \frac{50568103425711010543876067735}{363822988165344498474824457682} a^{10} - \frac{56605791489937989033265018963945}{251765507810418392944578524715944} a^{9} + \frac{213228324309591769667228023235}{1455291952661377993899297830728} a^{8} + \frac{16296721498909138623005633347367}{125882753905209196472289262357972} a^{7} - \frac{53299262775654220437972490259}{363822988165344498474824457682} a^{6} - \frac{125623121971134003931410008500667}{503531015620836785889157049431888} a^{5} + \frac{1195660018586185453020043973423}{2910583905322755987798595661456} a^{4} - \frac{98519764356899699508195744583179}{251765507810418392944578524715944} a^{3} - \frac{76265435908659578481683448643}{1455291952661377993899297830728} a^{2} + \frac{151837797058669598009799363830679}{503531015620836785889157049431888} a - \frac{123610993720942145797564977285}{2910583905322755987798595661456}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 135115943309000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 225280 |
| The 88 conjugacy class representatives for t22n37 are not computed |
| Character table for t22n37 is not computed |
Intermediate fields
| 11.11.4910318845910094848.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | $20{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $7$ | 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.10.5.1 | $x^{10} - 98 x^{6} + 2401 x^{2} - 268912$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 7.10.5.1 | $x^{10} - 98 x^{6} + 2401 x^{2} - 268912$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 11 | Data not computed | ||||||