Normalized defining polynomial
\( x^{22} - x^{21} - 36 x^{20} + 50 x^{19} + 490 x^{18} - 882 x^{17} - 3318 x^{16} + 7872 x^{15} + 13095 x^{14} - 42815 x^{13} - 35956 x^{12} + 163086 x^{11} + 52061 x^{10} - 435095 x^{9} + 120585 x^{8} + 633792 x^{7} - 557172 x^{6} - 237747 x^{5} + 494230 x^{4} - 200200 x^{3} + 26136 x^{2} - 7216 x + 2464 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(504222339964811313697604991245269775390625=3^{21}\cdot 5^{20}\cdot 11^{17}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $78.63$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{5} a^{11} + \frac{2}{5} a^{10} - \frac{1}{5} a^{6} - \frac{2}{5} a^{5} - \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{5} a^{12} + \frac{1}{5} a^{10} - \frac{1}{5} a^{7} - \frac{1}{5} a^{5} - \frac{1}{5} a^{2} - \frac{1}{5}$, $\frac{1}{5} a^{13} - \frac{2}{5} a^{10} - \frac{1}{5} a^{8} + \frac{2}{5} a^{5} - \frac{1}{5} a^{3} + \frac{2}{5}$, $\frac{1}{5} a^{14} - \frac{1}{5} a^{10} - \frac{1}{5} a^{9} + \frac{1}{5} a^{5} - \frac{1}{5} a^{4} + \frac{1}{5}$, $\frac{1}{5} a^{15} + \frac{1}{5} a^{10} + \frac{2}{5} a^{5} - \frac{2}{5}$, $\frac{1}{5} a^{16} - \frac{2}{5} a^{10} - \frac{2}{5} a^{6} + \frac{2}{5} a^{5} - \frac{1}{5} a + \frac{2}{5}$, $\frac{1}{10} a^{17} + \frac{2}{5} a^{10} - \frac{1}{2} a^{9} - \frac{1}{5} a^{7} + \frac{1}{10} a^{5} - \frac{1}{2} a^{3} - \frac{1}{10} a^{2} - \frac{1}{2} a - \frac{2}{5}$, $\frac{1}{10} a^{18} - \frac{3}{10} a^{10} - \frac{1}{5} a^{8} - \frac{1}{2} a^{6} - \frac{1}{5} a^{5} - \frac{1}{2} a^{4} - \frac{1}{10} a^{3} - \frac{1}{2} a^{2} - \frac{1}{5}$, $\frac{1}{20} a^{19} - \frac{1}{20} a^{18} - \frac{1}{10} a^{16} - \frac{1}{10} a^{15} - \frac{1}{10} a^{14} - \frac{1}{10} a^{13} - \frac{1}{20} a^{11} + \frac{1}{4} a^{10} - \frac{3}{10} a^{8} + \frac{1}{4} a^{7} + \frac{1}{4} a^{6} + \frac{9}{20} a^{5} - \frac{1}{5} a^{4} + \frac{2}{5} a^{3} + \frac{1}{4} a^{2} - \frac{1}{10} a - \frac{2}{5}$, $\frac{1}{40} a^{20} - \frac{1}{40} a^{19} - \frac{1}{20} a^{17} + \frac{1}{20} a^{16} - \frac{1}{20} a^{15} + \frac{1}{20} a^{14} - \frac{1}{40} a^{12} + \frac{1}{40} a^{11} + \frac{1}{4} a^{9} + \frac{1}{8} a^{8} - \frac{3}{8} a^{7} + \frac{1}{8} a^{6} - \frac{1}{10} a^{5} - \frac{2}{5} a^{4} + \frac{1}{8} a^{3} - \frac{1}{20} a^{2} + \frac{3}{10} a$, $\frac{1}{4829641363385636103953992828782811920636001360} a^{21} - \frac{229554380883907406603009394709581262585203}{965928272677127220790798565756562384127200272} a^{20} - \frac{56835663527195288986890290522976265836252279}{2414820681692818051976996414391405960318000680} a^{19} - \frac{28268814085834748202579448830400135876390811}{2414820681692818051976996414391405960318000680} a^{18} + \frac{7802293608231385988783986338597974818255791}{2414820681692818051976996414391405960318000680} a^{17} - \frac{151278515489169399549990758417839339877658119}{2414820681692818051976996414391405960318000680} a^{16} + \frac{52150963553689313909843868868098643781463603}{2414820681692818051976996414391405960318000680} a^{15} + \frac{35258640931720602201560616340872485432927373}{1207410340846409025988498207195702980159000340} a^{14} + \frac{2355539214955126814469816170893300107334859}{965928272677127220790798565756562384127200272} a^{13} + \frac{10128379048701448221469580044786691370652675}{965928272677127220790798565756562384127200272} a^{12} - \frac{29682769187602868213080419121777536965404601}{482964136338563610395399282878281192063600136} a^{11} + \frac{1073825978991356958149197562167789797633228307}{2414820681692818051976996414391405960318000680} a^{10} + \frac{753067009621988573121976712943197183488325449}{4829641363385636103953992828782811920636001360} a^{9} + \frac{2385707661554172616708123487631825982234484179}{4829641363385636103953992828782811920636001360} a^{8} + \frac{821166674551234559350016081782811053551582371}{4829641363385636103953992828782811920636001360} a^{7} - \frac{206660293673196289401343079954931501507608031}{2414820681692818051976996414391405960318000680} a^{6} + \frac{382527576994028133147433127429674318483821581}{1207410340846409025988498207195702980159000340} a^{5} - \frac{2142490661510456052791845243361851823562438339}{4829641363385636103953992828782811920636001360} a^{4} + \frac{199533230878489415077300644849245037767672779}{603705170423204512994249103597851490079500170} a^{3} - \frac{99849870763728661757197036996936052158083883}{1207410340846409025988498207195702980159000340} a^{2} - \frac{172204616246999752378245643575285279052699643}{603705170423204512994249103597851490079500170} a - \frac{3219660892194250275191136861513120410489250}{60370517042320451299424910359785149007950017}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 142638333948000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 112640 |
| The 80 conjugacy class representatives for t22n36 are not computed |
| Character table for t22n36 is not computed |
Intermediate fields
| 11.11.123610132462587890625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{2}$ | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | $22$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $11$ | 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |