Normalized defining polynomial
\( x^{22} - 3 x^{21} - 42 x^{20} + 90 x^{19} + 795 x^{18} - 951 x^{17} - 8547 x^{16} + 3882 x^{15} + 51570 x^{14} - 10425 x^{13} - 130425 x^{12} + 228675 x^{11} - 297975 x^{10} - 2683875 x^{9} + 3047535 x^{8} + 15171897 x^{7} - 9772041 x^{6} - 46458354 x^{5} + 22671390 x^{4} + 68608965 x^{3} - 35739546 x^{2} - 28301877 x + 11611317 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(504222339964811313697604991245269775390625=3^{21}\cdot 5^{20}\cdot 11^{17}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $78.63$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{4} a^{17} - \frac{1}{4} a^{14} - \frac{1}{4} a^{13} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} + \frac{1}{4} a^{10} - \frac{1}{2} a^{8} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{2} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{4} a^{18} - \frac{1}{4} a^{15} - \frac{1}{4} a^{14} - \frac{1}{4} a^{13} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{4} a^{19} - \frac{1}{4} a^{16} - \frac{1}{4} a^{15} - \frac{1}{4} a^{14} - \frac{1}{4} a^{13} - \frac{1}{4} a^{12} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{20} - \frac{1}{4} a^{16} - \frac{1}{4} a^{15} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} + \frac{1}{4} a^{9} + \frac{1}{4} a^{8} + \frac{1}{4} a^{6} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{4}$, $\frac{1}{2438749870885668670754655735025924087783212916635313810060156079308} a^{21} - \frac{14928045829025600530389855467687970860233984589390476645140104345}{609687467721417167688663933756481021945803229158828452515039019827} a^{20} + \frac{111071903694096172984112922890882703770967101249797844527100003477}{2438749870885668670754655735025924087783212916635313810060156079308} a^{19} + \frac{3278701581643444857625225167238500424446338092560553233328461891}{1219374935442834335377327867512962043891606458317656905030078039654} a^{18} - \frac{2032054829421160891412145647665493789033300498652985806207567226}{609687467721417167688663933756481021945803229158828452515039019827} a^{17} - \frac{79138067672982929903780107852040872804378527502010297778279450811}{1219374935442834335377327867512962043891606458317656905030078039654} a^{16} + \frac{431621105080612182824133993337156987791445173601694504464846285977}{2438749870885668670754655735025924087783212916635313810060156079308} a^{15} - \frac{13466140019067714780461094389138917352312910236773003668147154319}{1219374935442834335377327867512962043891606458317656905030078039654} a^{14} - \frac{362463228132526470358282797322140375913906884794846274989558891581}{2438749870885668670754655735025924087783212916635313810060156079308} a^{13} - \frac{13823197476737133600299079192347559739208470691586675944823917397}{2438749870885668670754655735025924087783212916635313810060156079308} a^{12} + \frac{76903389509319162190199566717466768385026956354657955656145258600}{609687467721417167688663933756481021945803229158828452515039019827} a^{11} + \frac{43085149527751182646989177592563872278066556201193981829802992960}{609687467721417167688663933756481021945803229158828452515039019827} a^{10} + \frac{134923550976689013774767639215524161840910274134486551811170688837}{2438749870885668670754655735025924087783212916635313810060156079308} a^{9} + \frac{707473400807639380898564402651015141479383151466992430652007793581}{2438749870885668670754655735025924087783212916635313810060156079308} a^{8} + \frac{284584419693286585931002117219905746103523330754038508674784495626}{609687467721417167688663933756481021945803229158828452515039019827} a^{7} - \frac{697673070137953351560198739752731140998626918566518005772674062767}{2438749870885668670754655735025924087783212916635313810060156079308} a^{6} - \frac{726257207555426024536666473082661433510416534046339667637585186947}{2438749870885668670754655735025924087783212916635313810060156079308} a^{5} + \frac{334076574874075204765480230430502583684742092858240141201934927227}{1219374935442834335377327867512962043891606458317656905030078039654} a^{4} + \frac{437528984476349566369158988677936738058379170070150440294055676045}{2438749870885668670754655735025924087783212916635313810060156079308} a^{3} - \frac{191065234887999526620954807268018370457245125443226001580052346997}{1219374935442834335377327867512962043891606458317656905030078039654} a^{2} + \frac{820290681931458542367320837440512157497500051044940088385654654411}{2438749870885668670754655735025924087783212916635313810060156079308} a - \frac{514182899354433322442960423902974053300089908714246840251702583647}{2438749870885668670754655735025924087783212916635313810060156079308}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 95111369392500 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 112640 |
| The 80 conjugacy class representatives for t22n36 are not computed |
| Character table for t22n36 is not computed |
Intermediate fields
| 11.11.123610132462587890625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{2}$ | R | R | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | $22$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $11$ | 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.10.9.7 | $x^{10} + 2673$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |