Normalized defining polynomial
\( x^{22} - 11 x^{20} - 44 x^{19} - 231 x^{18} + 176 x^{17} + 2981 x^{16} + 6996 x^{15} + 9812 x^{14} - 22990 x^{13} - 153714 x^{12} - 146644 x^{11} + 441386 x^{10} + 840818 x^{9} - 432300 x^{8} - 1836406 x^{7} - 559647 x^{6} + 1382480 x^{5} + 980903 x^{4} - 102718 x^{3} - 185581 x^{2} - 11440 x + 7375 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(475280588793468960243465169646444292866048=2^{28}\cdot 7^{11}\cdot 11^{23}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $78.42$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{31416487146844778578510926153081279411624404170438322835718905} a^{21} - \frac{2872239577951869178618927411392596964651580034629897371542893}{6283297429368955715702185230616255882324880834087664567143781} a^{20} - \frac{12310721892993850713103591696941155743847038438651874602629211}{31416487146844778578510926153081279411624404170438322835718905} a^{19} + \frac{3761838081535244597027969073616099366957602433252225109183152}{10472162382281592859503642051027093137208134723479440945239635} a^{18} + \frac{1313691403606801923413259500699759023211397654298055556417188}{10472162382281592859503642051027093137208134723479440945239635} a^{17} + \frac{921173560397278968994188523304122122863946866676991187883238}{1848028655696751681088878009004781141860259068849313107983465} a^{16} + \frac{9849365047234973589851807018920107740525643281888652388359436}{31416487146844778578510926153081279411624404170438322835718905} a^{15} + \frac{15562863070851834804462859698679780526738301535439271669193966}{31416487146844778578510926153081279411624404170438322835718905} a^{14} - \frac{3148658489667974001680620530646096852459380735770425317346091}{10472162382281592859503642051027093137208134723479440945239635} a^{13} + \frac{421967797480540307738477626189638017859276918293454844588888}{6283297429368955715702185230616255882324880834087664567143781} a^{12} + \frac{11874501062668994306549945259432288657061098016947365069852396}{31416487146844778578510926153081279411624404170438322835718905} a^{11} + \frac{3888183874163554936532007376777444175889216947810731890358681}{31416487146844778578510926153081279411624404170438322835718905} a^{10} + \frac{514852643290699796717696166507321459078476953722687388334472}{10472162382281592859503642051027093137208134723479440945239635} a^{9} - \frac{5359567794275250383329298178485898325179508777535048439143602}{31416487146844778578510926153081279411624404170438322835718905} a^{8} - \frac{561561493749225524830795818425663890338784678858205455127102}{6283297429368955715702185230616255882324880834087664567143781} a^{7} - \frac{1884931410539721013493303302673844670783139865393325002764516}{31416487146844778578510926153081279411624404170438322835718905} a^{6} + \frac{6433474693079832907607089909927885355976565642850811242794558}{31416487146844778578510926153081279411624404170438322835718905} a^{5} - \frac{885800621314575170428589904700168319191524473099047285442295}{2094432476456318571900728410205418627441626944695888189047927} a^{4} - \frac{2045415110412133317529446539589893005800259731096654764614327}{31416487146844778578510926153081279411624404170438322835718905} a^{3} - \frac{77436901250846101477129005249494603066575252737541348780118}{31416487146844778578510926153081279411624404170438322835718905} a^{2} + \frac{5190941220573028456825201209404590893894522470962978375093993}{10472162382281592859503642051027093137208134723479440945239635} a + \frac{826882204632732393371011143039300191943389340156682260655822}{6283297429368955715702185230616255882324880834087664567143781}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 24675739636700 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 112640 |
| The 44 conjugacy class representatives for t22n35 |
| Character table for t22n35 is not computed |
Intermediate fields
| 11.11.4910318845910094848.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | $20{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | R | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | $20{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $7$ | 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.10.5.1 | $x^{10} - 98 x^{6} + 2401 x^{2} - 268912$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 7.10.5.1 | $x^{10} - 98 x^{6} + 2401 x^{2} - 268912$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 11 | Data not computed | ||||||