Normalized defining polynomial
\( x^{22} - 9 x^{21} - 9 x^{20} + 360 x^{19} - 1395 x^{18} + 267 x^{17} + 12357 x^{16} - 35418 x^{15} + 25365 x^{14} + 69285 x^{13} - 205122 x^{12} + 200823 x^{11} + 133848 x^{10} - 600885 x^{9} + 522135 x^{8} + 432342 x^{7} - 1004868 x^{6} - 20988 x^{5} + 735885 x^{4} - 20385 x^{3} - 232074 x^{2} - 26469 x + 12591 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(46938516011269707747849773730468750000000000=2^{10}\cdot 3^{21}\cdot 5^{20}\cdot 11^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $96.62$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{3} a^{11}$, $\frac{1}{3} a^{12}$, $\frac{1}{3} a^{13}$, $\frac{1}{3} a^{14}$, $\frac{1}{3} a^{15}$, $\frac{1}{3} a^{16}$, $\frac{1}{6} a^{17} - \frac{1}{6} a^{16} - \frac{1}{6} a^{13} - \frac{1}{6} a^{12} - \frac{1}{6} a^{11} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{6} a^{18} - \frac{1}{6} a^{16} - \frac{1}{6} a^{14} - \frac{1}{6} a^{11} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{6} a^{19} - \frac{1}{6} a^{16} - \frac{1}{6} a^{15} - \frac{1}{6} a^{13} - \frac{1}{6} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{6} a^{20} - \frac{1}{6} a^{14} - \frac{1}{6} a^{13} - \frac{1}{6} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4985767448555671958112295677834947880297399150618346038} a^{21} + \frac{11743956799179951779868353173822040760646988303569584}{276987080475315108784016426546385993349855508367685891} a^{20} + \frac{112611196105917822726204342299020085863769764371657893}{1661922482851890652704098559278315960099133050206115346} a^{19} - \frac{164600822798661391526233474834432630680062632259702}{25180643679574100798546947867853272122714137124335081} a^{18} - \frac{11704607207717535744159581645661393600262634867431319}{830961241425945326352049279639157980049566525103057673} a^{17} - \frac{19307024155407390144886952281120398523993462078356787}{127840190988606973284930658406024304623010234631239642} a^{16} - \frac{39544603087504346520059307561411570342227432503243786}{276987080475315108784016426546385993349855508367685891} a^{15} - \frac{6275062953131936237377414226978380283861075776133183}{553974160950630217568032853092771986699711016735371782} a^{14} - \frac{250538404620945413507792308642725036104517031066748711}{1661922482851890652704098559278315960099133050206115346} a^{13} - \frac{110591025192009832759565295982295407619824556639328199}{1661922482851890652704098559278315960099133050206115346} a^{12} - \frac{61322486045696186328748759494949808614151860376810713}{553974160950630217568032853092771986699711016735371782} a^{11} - \frac{368718483838744769185087523861634773720041166883613780}{830961241425945326352049279639157980049566525103057673} a^{10} + \frac{68168777430425865870229886149490783134897927377499981}{276987080475315108784016426546385993349855508367685891} a^{9} - \frac{252573285909440071947240599288608148575706254073085239}{553974160950630217568032853092771986699711016735371782} a^{8} + \frac{8028755437940600771907407808861514441975872388872633}{21306698498101162214155109734337384103835039105206607} a^{7} - \frac{116323559666701211521319563238506593601133888019578456}{276987080475315108784016426546385993349855508367685891} a^{6} - \frac{225838678137978385897368072909842271171873737117825191}{553974160950630217568032853092771986699711016735371782} a^{5} - \frac{131152914977872521912428858077224647808776081856808048}{276987080475315108784016426546385993349855508367685891} a^{4} + \frac{7125649478455464788769531204408586825210499864526852}{21306698498101162214155109734337384103835039105206607} a^{3} + \frac{31977730831553317064361270228087165749755693820740721}{553974160950630217568032853092771986699711016735371782} a^{2} + \frac{6894113290316720106714199087815352365779304084254732}{25180643679574100798546947867853272122714137124335081} a - \frac{259467213591473856426520353298080319902788955157639847}{553974160950630217568032853092771986699711016735371782}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 485610502350000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 112640 |
| The 80 conjugacy class representatives for t22n36 are not computed |
| Character table for t22n36 is not computed |
Intermediate fields
| 11.11.123610132462587890625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | $22$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.10.10.8 | $x^{10} + x^{8} - 2 x^{6} - 2 x^{4} + x^{2} + 33$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2, 2]^{5}$ | |
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $11$ | $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |