Normalized defining polynomial
\( x^{22} - 42 x^{20} + 480 x^{18} + 330 x^{16} - 26370 x^{14} + 37161 x^{12} + 346203 x^{10} - 454530 x^{8} - 1472070 x^{6} + 1147725 x^{4} + 643299 x^{2} - 98283 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(46938516011269707747849773730468750000000000=2^{10}\cdot 3^{21}\cdot 5^{20}\cdot 11^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $96.62$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{11} a^{14} - \frac{4}{11} a^{12} - \frac{3}{11} a^{10} + \frac{2}{11} a^{8} - \frac{3}{11} a^{6} - \frac{4}{11}$, $\frac{1}{11} a^{15} - \frac{4}{11} a^{13} - \frac{3}{11} a^{11} + \frac{2}{11} a^{9} - \frac{3}{11} a^{7} - \frac{4}{11} a$, $\frac{1}{22} a^{16} - \frac{1}{22} a^{14} - \frac{1}{2} a^{13} + \frac{7}{22} a^{12} - \frac{7}{22} a^{10} - \frac{1}{2} a^{9} - \frac{4}{11} a^{8} - \frac{1}{2} a^{7} - \frac{9}{22} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} + \frac{7}{22} a^{2} - \frac{1}{22}$, $\frac{1}{22} a^{17} - \frac{1}{22} a^{15} - \frac{1}{22} a^{14} + \frac{7}{22} a^{13} + \frac{2}{11} a^{12} - \frac{7}{22} a^{11} + \frac{3}{22} a^{10} - \frac{4}{11} a^{9} + \frac{9}{22} a^{8} - \frac{9}{22} a^{7} + \frac{3}{22} a^{6} - \frac{1}{2} a^{4} + \frac{7}{22} a^{3} - \frac{1}{22} a + \frac{2}{11}$, $\frac{1}{22} a^{18} - \frac{1}{22} a^{15} - \frac{7}{22} a^{13} + \frac{1}{11} a^{12} + \frac{3}{22} a^{11} + \frac{3}{22} a^{10} - \frac{1}{11} a^{9} - \frac{7}{22} a^{8} - \frac{4}{11} a^{7} + \frac{9}{22} a^{6} + \frac{7}{22} a^{4} - \frac{1}{2} a^{3} + \frac{3}{11} a^{2} + \frac{2}{11} a + \frac{1}{22}$, $\frac{1}{22} a^{19} - \frac{9}{22} a^{13} + \frac{3}{22} a^{11} - \frac{1}{2} a^{10} + \frac{2}{11} a^{9} - \frac{1}{11} a^{7} - \frac{1}{2} a^{6} - \frac{2}{11} a^{5} - \frac{1}{2} a^{4} - \frac{5}{22} a^{3} - \frac{1}{2} a^{2} + \frac{1}{22} a - \frac{1}{2}$, $\frac{1}{2208306105264690519225212042} a^{20} - \frac{5169265906949831999415531}{1104153052632345259612606021} a^{18} + \frac{10508685967207911812376596}{1104153052632345259612606021} a^{16} + \frac{3966070859997699085677361}{2208306105264690519225212042} a^{14} + \frac{185505416888966992436996427}{2208306105264690519225212042} a^{12} - \frac{1}{2} a^{11} + \frac{96526679126506580856105266}{1104153052632345259612606021} a^{10} + \frac{438199497650481022916174632}{1104153052632345259612606021} a^{8} - \frac{1}{2} a^{7} + \frac{93473859890067526148221638}{1104153052632345259612606021} a^{6} - \frac{1}{2} a^{5} - \frac{896831986015733044971961929}{2208306105264690519225212042} a^{4} - \frac{1}{2} a^{3} - \frac{31526787016328187402804789}{2208306105264690519225212042} a^{2} - \frac{1}{2} a + \frac{368813259473467212485503238}{1104153052632345259612606021}$, $\frac{1}{399703405052908983979763379602} a^{21} + \frac{4305896128476177259941356111}{399703405052908983979763379602} a^{19} + \frac{2921457642907027232609247015}{199851702526454491989881689801} a^{17} + \frac{2814537477560512905372310869}{399703405052908983979763379602} a^{15} - \frac{1173285458867763575714289251}{18168336593314044726352880891} a^{13} - \frac{1}{2} a^{12} - \frac{155091016861950451985624290785}{399703405052908983979763379602} a^{11} - \frac{1}{2} a^{10} + \frac{8626679479348695707004464353}{18168336593314044726352880891} a^{9} - \frac{1}{2} a^{8} - \frac{34536780972669851979883512657}{199851702526454491989881689801} a^{7} + \frac{43670800320235293797573226555}{399703405052908983979763379602} a^{5} + \frac{47111496443845117668854827320}{199851702526454491989881689801} a^{3} - \frac{99338791069639267741735193791}{399703405052908983979763379602} a - \frac{1}{2}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 702350281678000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 112640 |
| The 80 conjugacy class representatives for t22n36 are not computed |
| Character table for t22n36 is not computed |
Intermediate fields
| 11.11.123610132462587890625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | $22$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.10.10.8 | $x^{10} + x^{8} - 2 x^{6} - 2 x^{4} + x^{2} + 33$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2, 2]^{5}$ | |
| 2.10.0.1 | $x^{10} - x^{3} + 1$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $11$ | 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |