Normalized defining polynomial
\( x^{22} - 6 x^{21} - 17 x^{20} + 128 x^{19} + 36 x^{18} - 939 x^{17} + 1324 x^{16} + 1351 x^{15} - 14113 x^{14} + 19961 x^{13} + 63677 x^{12} - 139022 x^{11} - 153919 x^{10} + 426871 x^{9} + 228955 x^{8} - 682443 x^{7} - 246758 x^{6} + 494621 x^{5} + 166486 x^{4} - 90530 x^{3} - 15247 x^{2} + 1575 x + 49 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4299288794103243236127943577240214703609=19^{11}\cdot 211^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $63.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $19, 211$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{7} a^{19} + \frac{2}{7} a^{17} - \frac{3}{7} a^{15} + \frac{2}{7} a^{14} - \frac{2}{7} a^{13} - \frac{2}{7} a^{12} - \frac{2}{7} a^{11} + \frac{3}{7} a^{10} - \frac{1}{7} a^{9} - \frac{1}{7} a^{7} - \frac{2}{7} a^{6} + \frac{3}{7} a^{5} + \frac{2}{7} a^{4} - \frac{2}{7} a^{3} - \frac{1}{7} a^{2} + \frac{3}{7} a$, $\frac{1}{7} a^{20} + \frac{2}{7} a^{18} - \frac{3}{7} a^{16} + \frac{2}{7} a^{15} - \frac{2}{7} a^{14} - \frac{2}{7} a^{13} - \frac{2}{7} a^{12} + \frac{3}{7} a^{11} - \frac{1}{7} a^{10} - \frac{1}{7} a^{8} - \frac{2}{7} a^{7} + \frac{3}{7} a^{6} + \frac{2}{7} a^{5} - \frac{2}{7} a^{4} - \frac{1}{7} a^{3} + \frac{3}{7} a^{2}$, $\frac{1}{3165781988962474219197439907020147356513317699197505741} a^{21} + \frac{197124944580315513121207879832813747643606980536811281}{3165781988962474219197439907020147356513317699197505741} a^{20} + \frac{24923152517327904908130556417327899778339320356040853}{3165781988962474219197439907020147356513317699197505741} a^{19} - \frac{1339573323780106689474823754726191395052231073670900745}{3165781988962474219197439907020147356513317699197505741} a^{18} - \frac{1365425030020962935959459143971712316101608462176680625}{3165781988962474219197439907020147356513317699197505741} a^{17} - \frac{792489401203977313640389270152921048282015360927974151}{3165781988962474219197439907020147356513317699197505741} a^{16} + \frac{560316757177417420253299055877236170872006707626526399}{3165781988962474219197439907020147356513317699197505741} a^{15} + \frac{824156370352753805276883416808641977144984403499019563}{3165781988962474219197439907020147356513317699197505741} a^{14} - \frac{534783798853320010673735355497137861308249443170319803}{3165781988962474219197439907020147356513317699197505741} a^{13} - \frac{506965694817808302036657192329862129644548195054958917}{3165781988962474219197439907020147356513317699197505741} a^{12} - \frac{1345074347899102414311424185507569982079481618656974950}{3165781988962474219197439907020147356513317699197505741} a^{11} + \frac{114157989097270709663155972778304087075836234823321429}{3165781988962474219197439907020147356513317699197505741} a^{10} + \frac{758107617658615953107359279810422899487350795708505965}{3165781988962474219197439907020147356513317699197505741} a^{9} + \frac{714746343265577211764680234037572542568060021202492675}{3165781988962474219197439907020147356513317699197505741} a^{8} + \frac{1350598181822566539096582161885447528693850890967947311}{3165781988962474219197439907020147356513317699197505741} a^{7} + \frac{74790080906993089869736561667794881021001165436338444}{452254569851782031313919986717163908073331099885357963} a^{6} - \frac{935593535243319813498828693760853358085857145606468013}{3165781988962474219197439907020147356513317699197505741} a^{5} - \frac{1497435475230255705498763169436183892997984347491758266}{3165781988962474219197439907020147356513317699197505741} a^{4} - \frac{1066470316925681755111749559643669803693891682975503190}{3165781988962474219197439907020147356513317699197505741} a^{3} - \frac{1252058461178375448372968196446598560679321911868724540}{3165781988962474219197439907020147356513317699197505741} a^{2} + \frac{170426322635328294611692914578707256773952687193853102}{452254569851782031313919986717163908073331099885357963} a + \frac{24337468636057457880541280677085927015019563222188774}{64607795693111718759131426673880558296190157126479709}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1259441074740 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 22528 |
| The 100 conjugacy class representatives for t22n29 are not computed |
| Character table for t22n29 is not computed |
Intermediate fields
| 11.11.1035571956771279049.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/5.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | R | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/29.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/41.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/47.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $19$ | 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.3.1 | $x^{4} + 76$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 211 | Data not computed | ||||||