Normalized defining polynomial
\( x^{22} - 9 x^{21} - 5 x^{20} + 230 x^{19} - 343 x^{18} - 2094 x^{17} + 5295 x^{16} + 8119 x^{15} - 33602 x^{14} - 6253 x^{13} + 119287 x^{12} - 91272 x^{11} - 182743 x^{10} + 403919 x^{9} - 287584 x^{8} - 116709 x^{7} + 557374 x^{6} - 666253 x^{5} + 340515 x^{4} + 15415 x^{3} - 98010 x^{2} + 39788 x - 5047 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4299288794103243236127943577240214703609=19^{11}\cdot 211^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $63.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $19, 211$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{7} a^{20} + \frac{1}{7} a^{19} - \frac{2}{7} a^{18} - \frac{1}{7} a^{15} - \frac{1}{7} a^{13} + \frac{2}{7} a^{12} - \frac{3}{7} a^{11} - \frac{2}{7} a^{10} + \frac{2}{7} a^{9} - \frac{2}{7} a^{8} - \frac{1}{7} a^{7} + \frac{1}{7} a^{6} - \frac{2}{7} a^{5} + \frac{1}{7} a$, $\frac{1}{35872408560129678900799467376434345684535863308987} a^{21} + \frac{964763138365888148886957332223334122970745688082}{35872408560129678900799467376434345684535863308987} a^{20} - \frac{15909913130995041613869243153591853838173484194232}{35872408560129678900799467376434345684535863308987} a^{19} + \frac{13641495272466160875795940599616912231579683380083}{35872408560129678900799467376434345684535863308987} a^{18} - \frac{67655176206039613789768790003478495135184091695}{5124629794304239842971352482347763669219409044141} a^{17} + \frac{10993167699693868047535356952917977806974002526347}{35872408560129678900799467376434345684535863308987} a^{16} - \frac{1062760290095788435446409622980267317792648752251}{35872408560129678900799467376434345684535863308987} a^{15} + \frac{331454911303126385422139675869479460304524183667}{35872408560129678900799467376434345684535863308987} a^{14} + \frac{9559262493036011273741359549866787271398882284716}{35872408560129678900799467376434345684535863308987} a^{13} + \frac{5607009507749598115688784021384860247503957530724}{35872408560129678900799467376434345684535863308987} a^{12} - \frac{5686694879480481304608971860348410887408581114208}{35872408560129678900799467376434345684535863308987} a^{11} + \frac{14803339211785253511617394051232606939287529310203}{35872408560129678900799467376434345684535863308987} a^{10} + \frac{9494858107264741537945274965899286548071033085157}{35872408560129678900799467376434345684535863308987} a^{9} - \frac{733394556745848684508479848387494144245105070989}{5124629794304239842971352482347763669219409044141} a^{8} + \frac{4512038715654602767059282003359579186453488733246}{35872408560129678900799467376434345684535863308987} a^{7} - \frac{4857515230021842005340428308164552050717578865411}{35872408560129678900799467376434345684535863308987} a^{6} + \frac{10008774048443744633300814265360611693943405492757}{35872408560129678900799467376434345684535863308987} a^{5} - \frac{954074006316920120912724949302718569888712072089}{5124629794304239842971352482347763669219409044141} a^{4} - \frac{2003232047973009572174009469061430872848487357644}{5124629794304239842971352482347763669219409044141} a^{3} - \frac{16857803654055630006844783330306937801944221877498}{35872408560129678900799467376434345684535863308987} a^{2} - \frac{15535507700298524500497854221687884036935542912478}{35872408560129678900799467376434345684535863308987} a - \frac{141701460361934453007554874382640681169332228936}{5124629794304239842971352482347763669219409044141}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1094458840240 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 22528 |
| The 100 conjugacy class representatives for t22n29 are not computed |
| Character table for t22n29 is not computed |
Intermediate fields
| 11.11.1035571956771279049.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/5.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{7}$ | R | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/29.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/41.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/47.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $19$ | 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.3.1 | $x^{4} + 76$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 211 | Data not computed | ||||||