Normalized defining polynomial
\( x^{22} - 36 x^{20} + 91 x^{18} + 5496 x^{16} - 15645 x^{14} - 100112 x^{12} + 193171 x^{10} + 462289 x^{8} - 300154 x^{6} - 427250 x^{4} + 146699 x^{2} - 11449 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4129233136056857981979443884256982828952059904=2^{22}\cdot 74843^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $118.43$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 74843$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{4} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{5} - \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{6} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{7} - \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{4} + \frac{1}{3}$, $\frac{1}{3} a^{15} + \frac{1}{3} a^{5} + \frac{1}{3} a$, $\frac{1}{9} a^{16} + \frac{1}{9} a^{12} + \frac{1}{9} a^{10} - \frac{4}{9} a^{6} - \frac{1}{9} a^{4} + \frac{1}{9} a^{2} + \frac{1}{9}$, $\frac{1}{9} a^{17} + \frac{1}{9} a^{13} + \frac{1}{9} a^{11} - \frac{4}{9} a^{7} - \frac{1}{9} a^{5} + \frac{1}{9} a^{3} + \frac{1}{9} a$, $\frac{1}{27} a^{18} - \frac{1}{27} a^{16} + \frac{4}{27} a^{14} - \frac{4}{27} a^{10} - \frac{1}{27} a^{8} - \frac{4}{9} a^{6} - \frac{13}{27} a^{4} + \frac{1}{9} a^{2} - \frac{4}{27}$, $\frac{1}{27} a^{19} - \frac{1}{27} a^{17} + \frac{4}{27} a^{15} - \frac{4}{27} a^{11} - \frac{1}{27} a^{9} - \frac{4}{9} a^{7} - \frac{13}{27} a^{5} + \frac{1}{9} a^{3} - \frac{4}{27} a$, $\frac{1}{1042092389545482767231479995} a^{20} + \frac{8248508624489963535332638}{1042092389545482767231479995} a^{18} + \frac{10372719637439181458202353}{1042092389545482767231479995} a^{16} + \frac{53118118076736639074851238}{1042092389545482767231479995} a^{14} + \frac{17354104361752252637693912}{1042092389545482767231479995} a^{12} + \frac{18978777925338279071109712}{347364129848494255743826665} a^{10} - \frac{13713396911243149647841096}{208418477909096553446295999} a^{8} - \frac{91133426578108677144173911}{1042092389545482767231479995} a^{6} - \frac{220370758896441835984798748}{1042092389545482767231479995} a^{4} + \frac{171579186062004747954931238}{1042092389545482767231479995} a^{2} + \frac{71424714727864481472751846}{1042092389545482767231479995}$, $\frac{1}{111503885681366656093768359465} a^{21} + \frac{85440537479710909256183008}{111503885681366656093768359465} a^{19} - \frac{2961520391288567228794536892}{111503885681366656093768359465} a^{17} - \frac{3806483324684310646967667262}{111503885681366656093768359465} a^{15} - \frac{793162198618067677431234973}{111503885681366656093768359465} a^{13} + \frac{4393193746387858536585964012}{37167961893788885364589453155} a^{11} - \frac{1835445277894457468659909828}{22300777136273331218753671893} a^{9} - \frac{14101486663800710325478516066}{111503885681366656093768359465} a^{7} - \frac{21255198621944149544916524573}{111503885681366656093768359465} a^{5} - \frac{17775567522776865132142779787}{111503885681366656093768359465} a^{3} - \frac{53847207440643966104541231599}{111503885681366656093768359465} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9571967085910000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 675840 |
| The 56 conjugacy class representatives for t22n39 are not computed |
| Character table for t22n39 is not computed |
Intermediate fields
| 11.11.31376518243389673201.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 22 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 74843 | Data not computed | ||||||