Normalized defining polynomial
\( x^{22} - 3 x^{21} - 14 x^{20} + 65 x^{19} - 57 x^{18} - 197 x^{17} + 729 x^{16} - 508 x^{15} - 1121 x^{14} + 1546 x^{13} - 935 x^{12} + 160 x^{11} + 1889 x^{10} - 975 x^{9} + 579 x^{8} + 80 x^{7} - 700 x^{6} + 99 x^{5} - 159 x^{4} - 75 x^{3} + 41 x^{2} + 15 x + 1 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4098058278162967431271914143428729=23^{21}\cdot 47^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.72$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{47} a^{19} + \frac{17}{47} a^{18} - \frac{3}{47} a^{17} - \frac{19}{47} a^{16} + \frac{1}{47} a^{15} - \frac{11}{47} a^{14} - \frac{22}{47} a^{13} + \frac{15}{47} a^{12} + \frac{7}{47} a^{11} + \frac{5}{47} a^{10} - \frac{20}{47} a^{9} + \frac{15}{47} a^{8} + \frac{1}{47} a^{7} - \frac{5}{47} a^{6} - \frac{22}{47} a^{5} - \frac{8}{47} a^{4} + \frac{12}{47} a^{3} + \frac{21}{47} a^{2} - \frac{17}{47} a + \frac{2}{47}$, $\frac{1}{47} a^{20} - \frac{10}{47} a^{18} - \frac{15}{47} a^{17} - \frac{5}{47} a^{16} + \frac{19}{47} a^{15} - \frac{23}{47} a^{14} + \frac{13}{47} a^{13} - \frac{13}{47} a^{12} - \frac{20}{47} a^{11} - \frac{11}{47} a^{10} - \frac{21}{47} a^{9} - \frac{19}{47} a^{8} - \frac{22}{47} a^{7} + \frac{16}{47} a^{6} - \frac{10}{47} a^{5} + \frac{7}{47} a^{4} + \frac{5}{47} a^{3} + \frac{2}{47} a^{2} + \frac{9}{47} a + \frac{13}{47}$, $\frac{1}{886074417459257567061970228561} a^{21} - \frac{5381274573757033652941917901}{886074417459257567061970228561} a^{20} - \frac{6260106050668971205570604777}{886074417459257567061970228561} a^{19} + \frac{59875204045785342625925181586}{886074417459257567061970228561} a^{18} + \frac{82587176323027901926041406712}{886074417459257567061970228561} a^{17} + \frac{104924798822926122477708004290}{886074417459257567061970228561} a^{16} + \frac{240283569705251450505473279920}{886074417459257567061970228561} a^{15} - \frac{266368216863656062884238082793}{886074417459257567061970228561} a^{14} + \frac{290438208016014419590492209711}{886074417459257567061970228561} a^{13} - \frac{115912143541555708447901723153}{886074417459257567061970228561} a^{12} - \frac{113937858151639036276227180418}{886074417459257567061970228561} a^{11} - \frac{401159460417198546588789886305}{886074417459257567061970228561} a^{10} - \frac{232944096252970807007354410640}{886074417459257567061970228561} a^{9} - \frac{391994599852224898324402138645}{886074417459257567061970228561} a^{8} - \frac{284154250618212195720450567085}{886074417459257567061970228561} a^{7} - \frac{131123306760870282519901545459}{886074417459257567061970228561} a^{6} - \frac{141369091468286219179012245232}{886074417459257567061970228561} a^{5} + \frac{192103742684293964610750510034}{886074417459257567061970228561} a^{4} - \frac{353603888552958954606441716883}{886074417459257567061970228561} a^{3} - \frac{432757859490697004628806310021}{886074417459257567061970228561} a^{2} + \frac{364610717565733767080927488829}{886074417459257567061970228561} a + \frac{384503966897540676073410016723}{886074417459257567061970228561}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 903801457.7 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 22528 |
| The 208 conjugacy class representatives for t22n28 are not computed |
| Character table for t22n28 is not computed |
Intermediate fields
| \(\Q(\zeta_{23})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/5.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ | $22$ | $22$ | ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ | R | $22$ | $22$ | $22$ | $22$ | ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ | R | $22$ | ${\href{/LocalNumberField/59.11.0.1}{11} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 23 | Data not computed | ||||||
| 47 | Data not computed | ||||||