Normalized defining polynomial
\( x^{22} - 3 x^{21} - 10 x^{20} + 29 x^{19} + 22 x^{18} - 50 x^{17} - 4 x^{16} - 40 x^{15} - 36 x^{14} + 30 x^{13} + 27 x^{12} + 115 x^{11} + 27 x^{10} + 30 x^{9} - 36 x^{8} - 40 x^{7} - 4 x^{6} - 50 x^{5} + 22 x^{4} + 29 x^{3} - 10 x^{2} - 3 x + 1 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3790988231418101231518884499009=23^{20}\cdot 47^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $24.54$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{47} a^{18} - \frac{8}{47} a^{17} - \frac{20}{47} a^{16} + \frac{7}{47} a^{15} - \frac{8}{47} a^{14} - \frac{17}{47} a^{13} - \frac{4}{47} a^{12} + \frac{17}{47} a^{11} - \frac{16}{47} a^{10} + \frac{2}{47} a^{9} - \frac{16}{47} a^{8} + \frac{17}{47} a^{7} - \frac{4}{47} a^{6} - \frac{17}{47} a^{5} - \frac{8}{47} a^{4} + \frac{7}{47} a^{3} - \frac{20}{47} a^{2} - \frac{8}{47} a + \frac{1}{47}$, $\frac{1}{47} a^{19} + \frac{10}{47} a^{17} - \frac{12}{47} a^{16} + \frac{1}{47} a^{15} + \frac{13}{47} a^{14} + \frac{1}{47} a^{13} - \frac{15}{47} a^{12} - \frac{21}{47} a^{11} + \frac{15}{47} a^{10} - \frac{17}{47} a^{8} - \frac{9}{47} a^{7} - \frac{2}{47} a^{6} - \frac{3}{47} a^{5} - \frac{10}{47} a^{4} - \frac{11}{47} a^{3} + \frac{20}{47} a^{2} - \frac{16}{47} a + \frac{8}{47}$, $\frac{1}{73789013} a^{20} - \frac{26139}{73789013} a^{19} + \frac{228028}{73789013} a^{18} - \frac{28332978}{73789013} a^{17} - \frac{1509928}{73789013} a^{16} - \frac{5720546}{73789013} a^{15} - \frac{3249885}{73789013} a^{14} + \frac{29260693}{73789013} a^{13} + \frac{764421}{1569979} a^{12} - \frac{9912110}{73789013} a^{11} - \frac{6995968}{73789013} a^{10} - \frac{30321837}{73789013} a^{9} + \frac{34357808}{73789013} a^{8} + \frac{21410798}{73789013} a^{7} + \frac{21869779}{73789013} a^{6} - \frac{8860504}{73789013} a^{5} + \frac{60051}{73789013} a^{4} - \frac{7923251}{73789013} a^{3} + \frac{15927818}{73789013} a^{2} + \frac{23523546}{73789013} a + \frac{6279917}{73789013}$, $\frac{1}{73789013} a^{21} - \frac{78428}{73789013} a^{19} + \frac{710252}{73789013} a^{18} - \frac{5158011}{73789013} a^{17} - \frac{562472}{1569979} a^{16} + \frac{6327992}{73789013} a^{15} - \frac{33858750}{73789013} a^{14} - \frac{32996413}{73789013} a^{13} - \frac{28235874}{73789013} a^{12} - \frac{16994741}{73789013} a^{11} + \frac{21893880}{73789013} a^{10} - \frac{36870146}{73789013} a^{9} - \frac{1622903}{73789013} a^{8} + \frac{3184907}{73789013} a^{7} + \frac{3379045}{73789013} a^{6} + \frac{218054}{73789013} a^{5} - \frac{23928952}{73789013} a^{4} - \frac{280097}{73789013} a^{3} + \frac{9873}{28153} a^{2} + \frac{2833503}{73789013} a + \frac{18865887}{73789013}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 24067678.7128 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 11264 |
| The 104 conjugacy class representatives for t22n23 are not computed |
| Character table for t22n23 is not computed |
Intermediate fields
| \(\Q(\zeta_{23})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/5.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/13.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/17.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ | R | ${\href{/LocalNumberField/29.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/37.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/41.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ | R | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.11.0.1}{11} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $23$ | 23.11.10.10 | $x^{11} - 23$ | $11$ | $1$ | $10$ | $C_{11}$ | $[\ ]_{11}$ |
| 23.11.10.10 | $x^{11} - 23$ | $11$ | $1$ | $10$ | $C_{11}$ | $[\ ]_{11}$ | |
| 47 | Data not computed | ||||||