Normalized defining polynomial
\( x^{22} - 111 x^{20} + 2578 x^{18} - 9394 x^{16} - 239002 x^{14} + 1799474 x^{12} + 3562740 x^{10} - 42068353 x^{8} + 14604187 x^{6} + 177860434 x^{4} - 161361508 x^{2} - 673587 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(309044195601903421945287518629445365867259019395072=2^{22}\cdot 74843^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $197.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 74843$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{103875827928809168623036362892639587846980647381} a^{20} + \frac{24390724026814679343558875840167330763027150337}{103875827928809168623036362892639587846980647381} a^{18} - \frac{51077058122436367767703623772347492965611472988}{103875827928809168623036362892639587846980647381} a^{16} - \frac{27973191133882754369735087987394558442615711993}{103875827928809168623036362892639587846980647381} a^{14} - \frac{15366306373948387159634290584567980496691066631}{103875827928809168623036362892639587846980647381} a^{12} - \frac{32540074075496472578805398623086047471593489759}{103875827928809168623036362892639587846980647381} a^{10} + \frac{42174418839897027270577953554948240752917784471}{103875827928809168623036362892639587846980647381} a^{8} - \frac{30988497995758760515432344608014840136348646054}{103875827928809168623036362892639587846980647381} a^{6} + \frac{47248777295686231317241170298756321181414913421}{103875827928809168623036362892639587846980647381} a^{4} - \frac{4703824176285577847840720457703282058343175887}{103875827928809168623036362892639587846980647381} a^{2} - \frac{15488688121505107593206172458885223903931767487}{103875827928809168623036362892639587846980647381}$, $\frac{1}{311627483786427505869109088677918763540941942143} a^{21} + \frac{8130241342271559781186291946722443587675716779}{103875827928809168623036362892639587846980647381} a^{19} + \frac{52798769806372800855332739120292094881369174393}{311627483786427505869109088677918763540941942143} a^{17} - \frac{27973191133882754369735087987394558442615711993}{311627483786427505869109088677918763540941942143} a^{15} + \frac{88509521554860781463402072308071607350289580750}{311627483786427505869109088677918763540941942143} a^{13} - \frac{32540074075496472578805398623086047471593489759}{311627483786427505869109088677918763540941942143} a^{11} - \frac{20567136362970713784152803112563782364687620970}{103875827928809168623036362892639587846980647381} a^{9} - \frac{134864325924567929138468707500654427983329293435}{311627483786427505869109088677918763540941942143} a^{7} + \frac{47248777295686231317241170298756321181414913421}{311627483786427505869109088677918763540941942143} a^{5} + \frac{99172003752523590775195642434936305788637471494}{311627483786427505869109088677918763540941942143} a^{3} - \frac{15488688121505107593206172458885223903931767487}{311627483786427505869109088677918763540941942143} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1053982769940000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1351680 |
| The 112 conjugacy class representatives for t22n42 are not computed |
| Character table for t22n42 is not computed |
Intermediate fields
| 11.11.31376518243389673201.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 74843 | Data not computed | ||||||