Normalized defining polynomial
\( x^{22} + 37 x^{20} - 1608 x^{18} - 1511 x^{16} + 343041 x^{14} - 1379182 x^{12} - 18048818 x^{10} + 125311851 x^{8} - 182985604 x^{6} - 215226104 x^{4} + 568433909 x^{2} - 260528483 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(309044195601903421945287518629445365867259019395072=2^{22}\cdot 74843^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $197.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 74843$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{4213362217111217627296376123661451198345175156927} a^{20} - \frac{1270332916370419946056066318495717740329963592466}{4213362217111217627296376123661451198345175156927} a^{18} + \frac{698500590443243352008651067934060427431303142849}{4213362217111217627296376123661451198345175156927} a^{16} - \frac{85747713531842124100077010822226228990964328116}{221755906163748296173493480192707957807640797733} a^{14} + \frac{845587178189523580003937186196217133963707355567}{4213362217111217627296376123661451198345175156927} a^{12} - \frac{2092529609891314311954294598054333313227049013305}{4213362217111217627296376123661451198345175156927} a^{10} - \frac{477031094219426753422593229665566857761281754025}{4213362217111217627296376123661451198345175156927} a^{8} - \frac{1822841068583802701775323236305309158770210057379}{4213362217111217627296376123661451198345175156927} a^{6} + \frac{1126075048990041776289992303970584580035698463333}{4213362217111217627296376123661451198345175156927} a^{4} + \frac{100794028825786757630737107224342419694198149891}{4213362217111217627296376123661451198345175156927} a^{2} + \frac{767914693768222136997530970835084352173406135653}{4213362217111217627296376123661451198345175156927}$, $\frac{1}{248588370809561840010486191296025620702365334258693} a^{21} - \frac{98177663909928425373872717162709095302268992201787}{248588370809561840010486191296025620702365334258693} a^{19} + \frac{89179107149778813525232549664824535592679981438316}{248588370809561840010486191296025620702365334258693} a^{17} - \frac{1416283150514331901141037891978473975836809114514}{13083598463661149474236115331369769510650807066247} a^{15} - \frac{49714759427145087947552576297741197246178394527557}{248588370809561840010486191296025620702365334258693} a^{13} - \frac{86359773952115666857881817071283357280130552151845}{248588370809561840010486191296025620702365334258693} a^{11} - \frac{93170999870666214553942867950217493221355135206419}{248588370809561840010486191296025620702365334258693} a^{9} - \frac{81876723193696937620406469585872881927328538038992}{248588370809561840010486191296025620702365334258693} a^{7} - \frac{45220909339233352123970145056305378601761228262864}{248588370809561840010486191296025620702365334258693} a^{5} - \frac{105233261398954653924778665984311937538935180773284}{248588370809561840010486191296025620702365334258693} a^{3} + \frac{93461883470215009937517805691387010715767259588047}{248588370809561840010486191296025620702365334258693} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 979404602458000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1351680 |
| The 112 conjugacy class representatives for t22n42 are not computed |
| Character table for t22n42 is not computed |
Intermediate fields
| 11.11.31376518243389673201.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 74843 | Data not computed | ||||||