Normalized defining polynomial
\( x^{22} - 66 x^{20} + 764 x^{18} + 18746 x^{16} - 358167 x^{14} - 833741 x^{12} + 40130611 x^{10} - 82628849 x^{8} - 1347063832 x^{6} + 5030088709 x^{4} - 605479870 x^{2} - 113836203 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(309044195601903421945287518629445365867259019395072=2^{22}\cdot 74843^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $197.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 74843$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{753996110243150950252384179328119696726337253} a^{20} - \frac{69537623219113566626528347733000012503572615}{753996110243150950252384179328119696726337253} a^{18} + \frac{40858824145326866808619568196751522075543893}{753996110243150950252384179328119696726337253} a^{16} + \frac{7272261938345295543445496258895035780595482}{39684005802271102644862325227795773511912487} a^{14} + \frac{18004110664146399382243208682288256648289835}{753996110243150950252384179328119696726337253} a^{12} + \frac{70762782754385409410865282311101062094377898}{753996110243150950252384179328119696726337253} a^{10} - \frac{7999110269747790864309117913119041412235599}{16042470430705339367072003815491908440985899} a^{8} + \frac{326881658582969340815992359586596603520782483}{753996110243150950252384179328119696726337253} a^{6} + \frac{351594744675862238778152864569543886058527799}{753996110243150950252384179328119696726337253} a^{4} - \frac{311952436444323544337200833316355918839260743}{753996110243150950252384179328119696726337253} a^{2} + \frac{151459970782880341514076737556380387436464527}{753996110243150950252384179328119696726337253}$, $\frac{1}{29405848299482887059842982993796668172327152867} a^{21} + \frac{2992805233232899278800693934734812116070824807}{9801949433160962353280994331265556057442384289} a^{19} + \frac{14366784918765194921603918975431025759875951700}{29405848299482887059842982993796668172327152867} a^{17} + \frac{46348642228647064247413874975063972189175599}{119052017406813307934586975683387320535737461} a^{15} - \frac{3763979180994372618134506493746502398082256320}{9801949433160962353280994331265556057442384289} a^{13} - \frac{8977190540163425993617744869626335298621669138}{29405848299482887059842982993796668172327152867} a^{11} - \frac{120296403284685166433813144621562400499136892}{625656346797508235315808148804184429198450061} a^{9} - \frac{7213079443848540161707849433694600363742590047}{29405848299482887059842982993796668172327152867} a^{7} + \frac{12415532508566277442816299733819459033679923847}{29405848299482887059842982993796668172327152867} a^{5} - \frac{4835929097903229245851505909285074099197284261}{29405848299482887059842982993796668172327152867} a^{3} + \frac{12969393844916446495804607786134415231784197828}{29405848299482887059842982993796668172327152867} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 693857635182000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1351680 |
| The 112 conjugacy class representatives for t22n42 are not computed |
| Character table for t22n42 is not computed |
Intermediate fields
| 11.11.31376518243389673201.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | $22$ | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 74843 | Data not computed | ||||||