Normalized defining polynomial
\( x^{22} - 6 x^{21} - 96 x^{20} + 516 x^{19} + 3315 x^{18} - 15678 x^{17} - 58926 x^{16} + 239076 x^{15} + 605475 x^{14} - 2137974 x^{13} - 3792132 x^{12} + 12206088 x^{11} + 14763681 x^{10} - 46019430 x^{9} - 34917642 x^{8} + 112918896 x^{7} + 44592120 x^{6} - 169280496 x^{5} - 19547856 x^{4} + 127652544 x^{3} + 2781648 x^{2} - 33869664 x - 3859488 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3050063118130674940421242764072714852846127200026846650975238750208=2^{32}\cdot 3^{29}\cdot 7^{4}\cdot 23^{4}\cdot 137^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1052.00$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 23, 137$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{6} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{6} a^{10} - \frac{1}{2} a^{2}$, $\frac{1}{18} a^{11} - \frac{1}{6} a^{8} + \frac{1}{3} a^{7} - \frac{1}{2} a^{6} - \frac{1}{3} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{6} a^{2}$, $\frac{1}{36} a^{12} - \frac{1}{36} a^{11} - \frac{1}{6} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{4} a^{4} - \frac{1}{12} a^{3} - \frac{1}{6} a^{2} - \frac{1}{2} a$, $\frac{1}{36} a^{13} - \frac{1}{36} a^{11} - \frac{1}{6} a^{8} + \frac{1}{6} a^{7} - \frac{1}{12} a^{5} + \frac{1}{6} a^{4} - \frac{1}{4} a^{3} + \frac{1}{3} a^{2} - \frac{1}{2} a$, $\frac{1}{36} a^{14} - \frac{1}{36} a^{11} + \frac{1}{6} a^{8} + \frac{1}{3} a^{7} + \frac{1}{4} a^{6} + \frac{1}{3} a^{5} - \frac{1}{4} a^{3} + \frac{1}{3} a^{2} - \frac{1}{2} a$, $\frac{1}{36} a^{15} - \frac{1}{36} a^{11} - \frac{1}{6} a^{8} - \frac{5}{12} a^{7} + \frac{1}{6} a^{6} + \frac{1}{6} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} - \frac{1}{6} a^{2} - \frac{1}{2} a$, $\frac{1}{72} a^{16} - \frac{1}{72} a^{12} - \frac{1}{36} a^{11} - \frac{1}{8} a^{8} - \frac{1}{3} a^{7} - \frac{1}{6} a^{6} - \frac{1}{3} a^{5} + \frac{1}{8} a^{4} + \frac{5}{12} a^{3} - \frac{1}{6} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{72} a^{17} - \frac{1}{72} a^{13} - \frac{1}{36} a^{11} + \frac{1}{24} a^{9} + \frac{1}{6} a^{8} + \frac{1}{6} a^{7} - \frac{1}{2} a^{6} + \frac{7}{24} a^{5} + \frac{1}{6} a^{4} + \frac{1}{4} a^{3} - \frac{1}{6} a^{2}$, $\frac{1}{576} a^{18} - \frac{1}{288} a^{17} - \frac{1}{144} a^{16} - \frac{1}{144} a^{15} - \frac{1}{576} a^{14} + \frac{1}{96} a^{13} + \frac{1}{96} a^{12} - \frac{1}{48} a^{11} - \frac{11}{192} a^{10} + \frac{5}{96} a^{9} + \frac{5}{24} a^{8} - \frac{1}{6} a^{7} + \frac{7}{192} a^{6} + \frac{17}{96} a^{5} - \frac{15}{32} a^{4} + \frac{7}{16} a^{2} - \frac{3}{8} a + \frac{3}{8}$, $\frac{1}{1728} a^{19} - \frac{1}{144} a^{16} - \frac{1}{192} a^{15} - \frac{1}{144} a^{14} - \frac{1}{288} a^{13} - \frac{1}{192} a^{11} + \frac{5}{144} a^{10} + \frac{1}{16} a^{9} - \frac{1}{12} a^{8} - \frac{17}{64} a^{7} + \frac{1}{6} a^{6} + \frac{35}{96} a^{5} - \frac{5}{16} a^{4} + \frac{1}{16} a^{3} - \frac{1}{2} a^{2} - \frac{1}{8} a + \frac{1}{4}$, $\frac{1}{7776000} a^{20} - \frac{47}{1296000} a^{19} - \frac{181}{259200} a^{18} + \frac{323}{81000} a^{17} + \frac{6829}{2592000} a^{16} - \frac{767}{144000} a^{15} + \frac{31}{12960} a^{14} - \frac{613}{108000} a^{13} + \frac{4379}{864000} a^{12} - \frac{15139}{1296000} a^{11} + \frac{8719}{144000} a^{10} + \frac{5321}{216000} a^{9} + \frac{39967}{288000} a^{8} - \frac{13909}{86400} a^{7} + \frac{1939}{36000} a^{6} + \frac{32137}{216000} a^{5} - \frac{14731}{36000} a^{4} + \frac{16843}{36000} a^{3} - \frac{3241}{27000} a^{2} - \frac{3883}{18000} a - \frac{1849}{18000}$, $\frac{1}{35287823480245076801529067342928309341026604128000} a^{21} - \frac{1289363610364960746264320606363750462213879}{35287823480245076801529067342928309341026604128000} a^{20} - \frac{598416461844891157451454062460556143679668923}{2940651956687089733460755611910692445085550344000} a^{19} - \frac{483543772008412645257666758627608478784508783}{653478212597131051880167913757931654463455632000} a^{18} - \frac{17202016155123600342390456601482006640936737763}{11762607826748358933843022447642769780342201376000} a^{17} + \frac{1689614230279161091949336224247507772009645389}{405607166439598583925621463711819647598006944000} a^{16} - \frac{67121409487923961550192653806319806128991558809}{5881303913374179466921511223821384890171100688000} a^{15} - \frac{10444182294768055971169258334029301100038758139}{1470325978343544866730377805955346222542775172000} a^{14} - \frac{1007020642383278675620770188207309632290258437}{435652141731420701253445275838621102975637088000} a^{13} - \frac{1242854615776753146593388384511573274728372067}{11762607826748358933843022447642769780342201376000} a^{12} + \frac{5466341170757563300738207624231652878635138727}{2940651956687089733460755611910692445085550344000} a^{11} - \frac{11078301700679385711259162327956751665163893587}{1960434637791393155640503741273794963390366896000} a^{10} + \frac{211919503056373869125259844536481203827776863353}{3920869275582786311281007482547589926780733792000} a^{9} - \frac{147494104865636349381164234783467641341977180987}{3920869275582786311281007482547589926780733792000} a^{8} - \frac{652218102567733728376798347954437870397552385367}{1960434637791393155640503741273794963390366896000} a^{7} + \frac{404653099377583459166724469210256136379192781389}{980217318895696577820251870636897481695183448000} a^{6} - \frac{8722648207297773847346606891698996373957159}{35872545979714421878142794899794967308149440} a^{5} - \frac{7152685384466348035374154334231108642518753}{54456517716427587656680659479827637871954636} a^{4} - \frac{211521332752508235084119051436854933303584555777}{490108659447848288910125935318448740847591724000} a^{3} - \frac{4477740170731469569389923931612714446982271729}{49010865944784828891012593531844874084759172400} a^{2} + \frac{18433621238158927394765944166595105820345737401}{40842388287320690742510494609870728403965977000} a - \frac{10093308908313610675647845737562674824339086647}{81684776574641381485020989219741456807931954000}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 852811169305000000000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 39916800 |
| The 62 conjugacy class representatives for t22n46 are not computed |
| Character table for t22n46 is not computed |
Intermediate fields
| \(\Q(\sqrt{3}) \), 11.7.63019333158425674204677255696384.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | $22$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | $22$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/41.14.0.1}{14} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.8.12.13 | $x^{8} + 12 x^{4} + 16$ | $4$ | $2$ | $12$ | $D_4$ | $[2, 2]^{2}$ | |
| 2.12.18.79 | $x^{12} + 2 x^{9} + 2 x^{7} + 2 x^{2} - 2$ | $12$ | $1$ | $18$ | $C_2 \times S_4$ | $[4/3, 4/3, 2]_{3}^{2}$ | |
| 3 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| $23$ | 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.7.0.1 | $x^{7} - x + 8$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ | |
| 23.7.0.1 | $x^{7} - x + 8$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ | |
| $137$ | 137.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 137.10.8.1 | $x^{10} - 137 x^{5} + 112614$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 137.10.8.1 | $x^{10} - 137 x^{5} + 112614$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |