Properties

Label 22.14.305...208.1
Degree $22$
Signature $[14, 4]$
Discriminant $3.050\times 10^{66}$
Root discriminant \(1052.00\)
Ramified primes $2,3,7,23,137$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_2\times A_{11}$ (as 22T46)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^22 - 6*x^21 - 96*x^20 + 516*x^19 + 3315*x^18 - 15678*x^17 - 58926*x^16 + 239076*x^15 + 605475*x^14 - 2137974*x^13 - 3792132*x^12 + 12206088*x^11 + 14763681*x^10 - 46019430*x^9 - 34917642*x^8 + 112918896*x^7 + 44592120*x^6 - 169280496*x^5 - 19547856*x^4 + 127652544*x^3 + 2781648*x^2 - 33869664*x - 3859488)
 
gp: K = bnfinit(y^22 - 6*y^21 - 96*y^20 + 516*y^19 + 3315*y^18 - 15678*y^17 - 58926*y^16 + 239076*y^15 + 605475*y^14 - 2137974*y^13 - 3792132*y^12 + 12206088*y^11 + 14763681*y^10 - 46019430*y^9 - 34917642*y^8 + 112918896*y^7 + 44592120*y^6 - 169280496*y^5 - 19547856*y^4 + 127652544*y^3 + 2781648*y^2 - 33869664*y - 3859488, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^22 - 6*x^21 - 96*x^20 + 516*x^19 + 3315*x^18 - 15678*x^17 - 58926*x^16 + 239076*x^15 + 605475*x^14 - 2137974*x^13 - 3792132*x^12 + 12206088*x^11 + 14763681*x^10 - 46019430*x^9 - 34917642*x^8 + 112918896*x^7 + 44592120*x^6 - 169280496*x^5 - 19547856*x^4 + 127652544*x^3 + 2781648*x^2 - 33869664*x - 3859488);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^22 - 6*x^21 - 96*x^20 + 516*x^19 + 3315*x^18 - 15678*x^17 - 58926*x^16 + 239076*x^15 + 605475*x^14 - 2137974*x^13 - 3792132*x^12 + 12206088*x^11 + 14763681*x^10 - 46019430*x^9 - 34917642*x^8 + 112918896*x^7 + 44592120*x^6 - 169280496*x^5 - 19547856*x^4 + 127652544*x^3 + 2781648*x^2 - 33869664*x - 3859488)
 

\( x^{22} - 6 x^{21} - 96 x^{20} + 516 x^{19} + 3315 x^{18} - 15678 x^{17} - 58926 x^{16} + 239076 x^{15} + \cdots - 3859488 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $22$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[14, 4]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(3050063118130674940421242764072714852846127200026846650975238750208\) \(\medspace = 2^{32}\cdot 3^{29}\cdot 7^{4}\cdot 23^{4}\cdot 137^{16}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(1052.00\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  not computed
Ramified primes:   \(2\), \(3\), \(7\), \(23\), \(137\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{3}) \)
$\card{ \Aut(K/\Q) }$:  $2$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{6}a^{9}-\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}$, $\frac{1}{6}a^{10}-\frac{1}{2}a^{2}$, $\frac{1}{18}a^{11}-\frac{1}{6}a^{8}+\frac{1}{3}a^{7}-\frac{1}{2}a^{6}-\frac{1}{3}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{6}a^{2}$, $\frac{1}{36}a^{12}-\frac{1}{36}a^{11}-\frac{1}{6}a^{7}+\frac{1}{3}a^{6}-\frac{1}{3}a^{5}+\frac{1}{4}a^{4}-\frac{1}{12}a^{3}-\frac{1}{6}a^{2}-\frac{1}{2}a$, $\frac{1}{36}a^{13}-\frac{1}{36}a^{11}-\frac{1}{6}a^{8}+\frac{1}{6}a^{7}-\frac{1}{12}a^{5}+\frac{1}{6}a^{4}-\frac{1}{4}a^{3}+\frac{1}{3}a^{2}-\frac{1}{2}a$, $\frac{1}{36}a^{14}-\frac{1}{36}a^{11}+\frac{1}{6}a^{8}+\frac{1}{3}a^{7}+\frac{1}{4}a^{6}+\frac{1}{3}a^{5}-\frac{1}{4}a^{3}+\frac{1}{3}a^{2}-\frac{1}{2}a$, $\frac{1}{36}a^{15}-\frac{1}{36}a^{11}-\frac{1}{6}a^{8}-\frac{5}{12}a^{7}+\frac{1}{6}a^{6}+\frac{1}{6}a^{5}-\frac{1}{2}a^{4}-\frac{1}{4}a^{3}-\frac{1}{6}a^{2}-\frac{1}{2}a$, $\frac{1}{72}a^{16}-\frac{1}{72}a^{12}-\frac{1}{36}a^{11}-\frac{1}{8}a^{8}-\frac{1}{3}a^{7}-\frac{1}{6}a^{6}-\frac{1}{3}a^{5}+\frac{1}{8}a^{4}+\frac{5}{12}a^{3}-\frac{1}{6}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{72}a^{17}-\frac{1}{72}a^{13}-\frac{1}{36}a^{11}+\frac{1}{24}a^{9}+\frac{1}{6}a^{8}+\frac{1}{6}a^{7}-\frac{1}{2}a^{6}+\frac{7}{24}a^{5}+\frac{1}{6}a^{4}+\frac{1}{4}a^{3}-\frac{1}{6}a^{2}$, $\frac{1}{576}a^{18}-\frac{1}{288}a^{17}-\frac{1}{144}a^{16}-\frac{1}{144}a^{15}-\frac{1}{576}a^{14}+\frac{1}{96}a^{13}+\frac{1}{96}a^{12}-\frac{1}{48}a^{11}-\frac{11}{192}a^{10}+\frac{5}{96}a^{9}+\frac{5}{24}a^{8}-\frac{1}{6}a^{7}+\frac{7}{192}a^{6}+\frac{17}{96}a^{5}-\frac{15}{32}a^{4}+\frac{7}{16}a^{2}-\frac{3}{8}a+\frac{3}{8}$, $\frac{1}{1728}a^{19}-\frac{1}{144}a^{16}-\frac{1}{192}a^{15}-\frac{1}{144}a^{14}-\frac{1}{288}a^{13}-\frac{1}{192}a^{11}+\frac{5}{144}a^{10}+\frac{1}{16}a^{9}-\frac{1}{12}a^{8}-\frac{17}{64}a^{7}+\frac{1}{6}a^{6}+\frac{35}{96}a^{5}-\frac{5}{16}a^{4}+\frac{1}{16}a^{3}-\frac{1}{2}a^{2}-\frac{1}{8}a+\frac{1}{4}$, $\frac{1}{7776000}a^{20}-\frac{47}{1296000}a^{19}-\frac{181}{259200}a^{18}+\frac{323}{81000}a^{17}+\frac{6829}{2592000}a^{16}-\frac{767}{144000}a^{15}+\frac{31}{12960}a^{14}-\frac{613}{108000}a^{13}+\frac{4379}{864000}a^{12}-\frac{15139}{1296000}a^{11}+\frac{8719}{144000}a^{10}+\frac{5321}{216000}a^{9}+\frac{39967}{288000}a^{8}-\frac{13909}{86400}a^{7}+\frac{1939}{36000}a^{6}+\frac{32137}{216000}a^{5}-\frac{14731}{36000}a^{4}+\frac{16843}{36000}a^{3}-\frac{3241}{27000}a^{2}-\frac{3883}{18000}a-\frac{1849}{18000}$, $\frac{1}{35\!\cdots\!00}a^{21}-\frac{12\!\cdots\!79}{35\!\cdots\!00}a^{20}-\frac{59\!\cdots\!23}{29\!\cdots\!00}a^{19}-\frac{48\!\cdots\!83}{65\!\cdots\!00}a^{18}-\frac{17\!\cdots\!63}{11\!\cdots\!00}a^{17}+\frac{16\!\cdots\!89}{40\!\cdots\!00}a^{16}-\frac{67\!\cdots\!09}{58\!\cdots\!00}a^{15}-\frac{10\!\cdots\!39}{14\!\cdots\!00}a^{14}-\frac{10\!\cdots\!37}{43\!\cdots\!00}a^{13}-\frac{12\!\cdots\!67}{11\!\cdots\!00}a^{12}+\frac{54\!\cdots\!27}{29\!\cdots\!00}a^{11}-\frac{11\!\cdots\!87}{19\!\cdots\!00}a^{10}+\frac{21\!\cdots\!53}{39\!\cdots\!00}a^{9}-\frac{14\!\cdots\!87}{39\!\cdots\!00}a^{8}-\frac{65\!\cdots\!67}{19\!\cdots\!00}a^{7}+\frac{40\!\cdots\!89}{98\!\cdots\!00}a^{6}-\frac{87\!\cdots\!59}{35\!\cdots\!40}a^{5}-\frac{71\!\cdots\!53}{54\!\cdots\!36}a^{4}-\frac{21\!\cdots\!77}{49\!\cdots\!00}a^{3}-\frac{44\!\cdots\!29}{49\!\cdots\!00}a^{2}+\frac{18\!\cdots\!01}{40\!\cdots\!00}a-\frac{10\!\cdots\!47}{81\!\cdots\!00}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $17$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{47\!\cdots\!09}{15\!\cdots\!68}a^{21}+\frac{14\!\cdots\!11}{52\!\cdots\!56}a^{20}-\frac{25\!\cdots\!81}{65\!\cdots\!32}a^{19}-\frac{14\!\cdots\!03}{26\!\cdots\!28}a^{18}+\frac{92\!\cdots\!29}{52\!\cdots\!56}a^{17}+\frac{63\!\cdots\!77}{20\!\cdots\!96}a^{16}-\frac{10\!\cdots\!15}{26\!\cdots\!28}a^{15}-\frac{50\!\cdots\!79}{65\!\cdots\!32}a^{14}+\frac{79\!\cdots\!47}{17\!\cdots\!52}a^{13}+\frac{49\!\cdots\!93}{52\!\cdots\!56}a^{12}-\frac{70\!\cdots\!63}{21\!\cdots\!44}a^{11}-\frac{57\!\cdots\!39}{87\!\cdots\!76}a^{10}+\frac{84\!\cdots\!75}{58\!\cdots\!84}a^{9}+\frac{47\!\cdots\!37}{17\!\cdots\!52}a^{8}-\frac{12\!\cdots\!87}{29\!\cdots\!92}a^{7}-\frac{31\!\cdots\!11}{43\!\cdots\!88}a^{6}+\frac{35\!\cdots\!63}{39\!\cdots\!16}a^{5}+\frac{39\!\cdots\!49}{36\!\cdots\!24}a^{4}-\frac{24\!\cdots\!15}{21\!\cdots\!44}a^{3}-\frac{32\!\cdots\!59}{36\!\cdots\!24}a^{2}+\frac{32\!\cdots\!32}{45\!\cdots\!53}a+\frac{17\!\cdots\!09}{36\!\cdots\!24}$, $\frac{60\!\cdots\!13}{39\!\cdots\!00}a^{21}-\frac{47\!\cdots\!69}{39\!\cdots\!00}a^{20}-\frac{39\!\cdots\!23}{30\!\cdots\!50}a^{19}+\frac{22\!\cdots\!83}{21\!\cdots\!00}a^{18}+\frac{43\!\cdots\!69}{13\!\cdots\!00}a^{17}-\frac{28\!\cdots\!57}{90\!\cdots\!00}a^{16}-\frac{78\!\cdots\!97}{21\!\cdots\!00}a^{15}+\frac{49\!\cdots\!37}{10\!\cdots\!00}a^{14}+\frac{13\!\cdots\!17}{13\!\cdots\!00}a^{13}-\frac{19\!\cdots\!77}{52\!\cdots\!60}a^{12}+\frac{44\!\cdots\!63}{36\!\cdots\!00}a^{11}+\frac{47\!\cdots\!47}{26\!\cdots\!80}a^{10}-\frac{54\!\cdots\!39}{43\!\cdots\!00}a^{9}-\frac{22\!\cdots\!73}{43\!\cdots\!00}a^{8}+\frac{37\!\cdots\!73}{72\!\cdots\!00}a^{7}+\frac{46\!\cdots\!27}{54\!\cdots\!00}a^{6}-\frac{10\!\cdots\!03}{99\!\cdots\!00}a^{5}-\frac{31\!\cdots\!69}{54\!\cdots\!00}a^{4}+\frac{51\!\cdots\!81}{54\!\cdots\!00}a^{3}+\frac{18\!\cdots\!67}{13\!\cdots\!00}a^{2}-\frac{11\!\cdots\!69}{45\!\cdots\!00}a-\frac{27\!\cdots\!03}{90\!\cdots\!00}$, $\frac{36\!\cdots\!51}{35\!\cdots\!00}a^{21}-\frac{14\!\cdots\!93}{19\!\cdots\!00}a^{20}-\frac{60\!\cdots\!81}{58\!\cdots\!00}a^{19}+\frac{10\!\cdots\!57}{14\!\cdots\!00}a^{18}+\frac{45\!\cdots\!67}{11\!\cdots\!00}a^{17}-\frac{16\!\cdots\!01}{67\!\cdots\!00}a^{16}-\frac{24\!\cdots\!37}{29\!\cdots\!00}a^{15}+\frac{69\!\cdots\!29}{16\!\cdots\!00}a^{14}+\frac{42\!\cdots\!97}{39\!\cdots\!00}a^{13}-\frac{24\!\cdots\!91}{58\!\cdots\!00}a^{12}-\frac{17\!\cdots\!47}{19\!\cdots\!00}a^{11}+\frac{25\!\cdots\!49}{98\!\cdots\!00}a^{10}+\frac{21\!\cdots\!47}{43\!\cdots\!00}a^{9}-\frac{18\!\cdots\!41}{19\!\cdots\!00}a^{8}-\frac{53\!\cdots\!07}{32\!\cdots\!00}a^{7}+\frac{21\!\cdots\!59}{98\!\cdots\!00}a^{6}+\frac{30\!\cdots\!37}{93\!\cdots\!25}a^{5}-\frac{85\!\cdots\!41}{32\!\cdots\!00}a^{4}-\frac{82\!\cdots\!91}{24\!\cdots\!00}a^{3}+\frac{17\!\cdots\!47}{18\!\cdots\!00}a^{2}+\frac{97\!\cdots\!87}{81\!\cdots\!00}a+\frac{42\!\cdots\!67}{34\!\cdots\!50}$, $\frac{18\!\cdots\!79}{19\!\cdots\!00}a^{21}-\frac{65\!\cdots\!33}{78\!\cdots\!00}a^{20}-\frac{13\!\cdots\!01}{19\!\cdots\!00}a^{19}+\frac{45\!\cdots\!89}{65\!\cdots\!00}a^{18}+\frac{91\!\cdots\!79}{65\!\cdots\!00}a^{17}-\frac{87\!\cdots\!21}{45\!\cdots\!00}a^{16}-\frac{37\!\cdots\!73}{65\!\cdots\!00}a^{15}+\frac{42\!\cdots\!63}{16\!\cdots\!00}a^{14}-\frac{76\!\cdots\!73}{65\!\cdots\!00}a^{13}-\frac{24\!\cdots\!57}{13\!\cdots\!00}a^{12}+\frac{10\!\cdots\!69}{65\!\cdots\!00}a^{11}+\frac{52\!\cdots\!69}{65\!\cdots\!00}a^{10}-\frac{20\!\cdots\!99}{21\!\cdots\!00}a^{9}-\frac{90\!\cdots\!29}{43\!\cdots\!00}a^{8}+\frac{64\!\cdots\!49}{21\!\cdots\!00}a^{7}+\frac{15\!\cdots\!77}{54\!\cdots\!00}a^{6}-\frac{16\!\cdots\!99}{33\!\cdots\!00}a^{5}-\frac{93\!\cdots\!81}{54\!\cdots\!00}a^{4}+\frac{21\!\cdots\!27}{54\!\cdots\!00}a^{3}+\frac{83\!\cdots\!83}{22\!\cdots\!00}a^{2}-\frac{19\!\cdots\!79}{18\!\cdots\!00}a-\frac{11\!\cdots\!59}{90\!\cdots\!00}$, $\frac{19\!\cdots\!97}{58\!\cdots\!00}a^{21}-\frac{16\!\cdots\!67}{70\!\cdots\!00}a^{20}-\frac{16\!\cdots\!43}{58\!\cdots\!00}a^{19}+\frac{11\!\cdots\!81}{58\!\cdots\!00}a^{18}+\frac{51\!\cdots\!91}{58\!\cdots\!00}a^{17}-\frac{24\!\cdots\!59}{40\!\cdots\!00}a^{16}-\frac{25\!\cdots\!39}{19\!\cdots\!00}a^{15}+\frac{27\!\cdots\!79}{29\!\cdots\!00}a^{14}+\frac{19\!\cdots\!61}{19\!\cdots\!00}a^{13}-\frac{31\!\cdots\!01}{39\!\cdots\!00}a^{12}-\frac{23\!\cdots\!99}{58\!\cdots\!00}a^{11}+\frac{96\!\cdots\!63}{21\!\cdots\!00}a^{10}+\frac{37\!\cdots\!29}{19\!\cdots\!00}a^{9}-\frac{20\!\cdots\!97}{13\!\cdots\!00}a^{8}+\frac{91\!\cdots\!21}{19\!\cdots\!00}a^{7}+\frac{21\!\cdots\!39}{65\!\cdots\!00}a^{6}-\frac{17\!\cdots\!63}{89\!\cdots\!00}a^{5}-\frac{14\!\cdots\!27}{40\!\cdots\!00}a^{4}+\frac{51\!\cdots\!61}{16\!\cdots\!00}a^{3}+\frac{25\!\cdots\!59}{24\!\cdots\!00}a^{2}-\frac{16\!\cdots\!61}{16\!\cdots\!00}a-\frac{10\!\cdots\!11}{81\!\cdots\!00}$, $\frac{82\!\cdots\!11}{19\!\cdots\!00}a^{21}-\frac{65\!\cdots\!13}{19\!\cdots\!00}a^{20}-\frac{16\!\cdots\!07}{49\!\cdots\!00}a^{19}+\frac{30\!\cdots\!51}{10\!\cdots\!00}a^{18}+\frac{54\!\cdots\!23}{65\!\cdots\!00}a^{17}-\frac{12\!\cdots\!51}{15\!\cdots\!00}a^{16}-\frac{29\!\cdots\!67}{32\!\cdots\!00}a^{15}+\frac{18\!\cdots\!67}{16\!\cdots\!00}a^{14}+\frac{28\!\cdots\!39}{65\!\cdots\!00}a^{13}-\frac{11\!\cdots\!33}{13\!\cdots\!00}a^{12}-\frac{18\!\cdots\!53}{10\!\cdots\!00}a^{11}+\frac{29\!\cdots\!91}{65\!\cdots\!00}a^{10}-\frac{20\!\cdots\!13}{21\!\cdots\!00}a^{9}-\frac{32\!\cdots\!01}{21\!\cdots\!00}a^{8}+\frac{61\!\cdots\!43}{10\!\cdots\!00}a^{7}+\frac{42\!\cdots\!27}{13\!\cdots\!00}a^{6}-\frac{26\!\cdots\!57}{16\!\cdots\!00}a^{5}-\frac{35\!\cdots\!11}{90\!\cdots\!00}a^{4}+\frac{22\!\cdots\!59}{90\!\cdots\!00}a^{3}+\frac{36\!\cdots\!11}{17\!\cdots\!75}a^{2}-\frac{76\!\cdots\!72}{56\!\cdots\!25}a-\frac{84\!\cdots\!11}{45\!\cdots\!00}$, $\frac{15\!\cdots\!33}{35\!\cdots\!00}a^{21}-\frac{94\!\cdots\!31}{35\!\cdots\!00}a^{20}-\frac{81\!\cdots\!59}{19\!\cdots\!00}a^{19}+\frac{67\!\cdots\!57}{29\!\cdots\!00}a^{18}+\frac{55\!\cdots\!71}{39\!\cdots\!00}a^{17}-\frac{14\!\cdots\!33}{20\!\cdots\!00}a^{16}-\frac{36\!\cdots\!97}{14\!\cdots\!00}a^{15}+\frac{31\!\cdots\!51}{29\!\cdots\!00}a^{14}+\frac{98\!\cdots\!23}{39\!\cdots\!00}a^{13}-\frac{56\!\cdots\!61}{58\!\cdots\!00}a^{12}-\frac{90\!\cdots\!01}{58\!\cdots\!00}a^{11}+\frac{27\!\cdots\!27}{49\!\cdots\!00}a^{10}+\frac{22\!\cdots\!97}{39\!\cdots\!00}a^{9}-\frac{40\!\cdots\!87}{19\!\cdots\!00}a^{8}-\frac{62\!\cdots\!19}{49\!\cdots\!00}a^{7}+\frac{49\!\cdots\!61}{98\!\cdots\!00}a^{6}+\frac{30\!\cdots\!87}{22\!\cdots\!00}a^{5}-\frac{61\!\cdots\!41}{81\!\cdots\!00}a^{4}+\frac{44\!\cdots\!93}{12\!\cdots\!00}a^{3}+\frac{68\!\cdots\!93}{12\!\cdots\!00}a^{2}-\frac{97\!\cdots\!83}{18\!\cdots\!00}a-\frac{57\!\cdots\!77}{40\!\cdots\!00}$, $\frac{14\!\cdots\!49}{35\!\cdots\!00}a^{21}-\frac{42\!\cdots\!87}{17\!\cdots\!00}a^{20}-\frac{26\!\cdots\!07}{65\!\cdots\!00}a^{19}+\frac{30\!\cdots\!03}{14\!\cdots\!00}a^{18}+\frac{11\!\cdots\!27}{78\!\cdots\!00}a^{17}-\frac{12\!\cdots\!21}{20\!\cdots\!00}a^{16}-\frac{80\!\cdots\!41}{29\!\cdots\!00}a^{15}+\frac{13\!\cdots\!39}{14\!\cdots\!00}a^{14}+\frac{23\!\cdots\!59}{78\!\cdots\!00}a^{13}-\frac{45\!\cdots\!97}{58\!\cdots\!00}a^{12}-\frac{12\!\cdots\!87}{58\!\cdots\!00}a^{11}+\frac{39\!\cdots\!83}{98\!\cdots\!00}a^{10}+\frac{73\!\cdots\!29}{78\!\cdots\!00}a^{9}-\frac{26\!\cdots\!83}{19\!\cdots\!00}a^{8}-\frac{26\!\cdots\!49}{98\!\cdots\!00}a^{7}+\frac{26\!\cdots\!09}{98\!\cdots\!00}a^{6}+\frac{10\!\cdots\!37}{22\!\cdots\!00}a^{5}-\frac{48\!\cdots\!07}{16\!\cdots\!00}a^{4}-\frac{20\!\cdots\!71}{49\!\cdots\!00}a^{3}+\frac{24\!\cdots\!91}{24\!\cdots\!00}a^{2}+\frac{38\!\cdots\!99}{27\!\cdots\!00}a+\frac{14\!\cdots\!93}{10\!\cdots\!50}$, $\frac{31\!\cdots\!11}{35\!\cdots\!00}a^{21}-\frac{14\!\cdots\!81}{17\!\cdots\!00}a^{20}-\frac{88\!\cdots\!97}{11\!\cdots\!00}a^{19}+\frac{36\!\cdots\!79}{49\!\cdots\!00}a^{18}+\frac{25\!\cdots\!59}{11\!\cdots\!00}a^{17}-\frac{49\!\cdots\!07}{20\!\cdots\!00}a^{16}-\frac{19\!\cdots\!37}{58\!\cdots\!00}a^{15}+\frac{60\!\cdots\!71}{14\!\cdots\!00}a^{14}+\frac{45\!\cdots\!03}{13\!\cdots\!00}a^{13}-\frac{22\!\cdots\!39}{58\!\cdots\!00}a^{12}-\frac{16\!\cdots\!29}{58\!\cdots\!00}a^{11}+\frac{21\!\cdots\!21}{98\!\cdots\!00}a^{10}+\frac{58\!\cdots\!71}{39\!\cdots\!00}a^{9}-\frac{12\!\cdots\!13}{15\!\cdots\!68}a^{8}-\frac{52\!\cdots\!01}{98\!\cdots\!00}a^{7}+\frac{16\!\cdots\!67}{98\!\cdots\!00}a^{6}+\frac{16\!\cdots\!17}{14\!\cdots\!75}a^{5}-\frac{10\!\cdots\!39}{54\!\cdots\!00}a^{4}-\frac{34\!\cdots\!47}{24\!\cdots\!00}a^{3}+\frac{16\!\cdots\!81}{24\!\cdots\!00}a^{2}+\frac{46\!\cdots\!91}{81\!\cdots\!00}a+\frac{57\!\cdots\!28}{10\!\cdots\!25}$, $\frac{16\!\cdots\!73}{35\!\cdots\!00}a^{21}-\frac{15\!\cdots\!27}{49\!\cdots\!00}a^{20}-\frac{25\!\cdots\!89}{58\!\cdots\!00}a^{19}+\frac{19\!\cdots\!13}{73\!\cdots\!00}a^{18}+\frac{16\!\cdots\!29}{11\!\cdots\!00}a^{17}-\frac{55\!\cdots\!03}{67\!\cdots\!00}a^{16}-\frac{33\!\cdots\!19}{14\!\cdots\!00}a^{15}+\frac{13\!\cdots\!03}{10\!\cdots\!00}a^{14}+\frac{80\!\cdots\!99}{39\!\cdots\!00}a^{13}-\frac{65\!\cdots\!07}{58\!\cdots\!00}a^{12}-\frac{42\!\cdots\!67}{39\!\cdots\!00}a^{11}+\frac{12\!\cdots\!11}{19\!\cdots\!00}a^{10}+\frac{43\!\cdots\!63}{14\!\cdots\!00}a^{9}-\frac{11\!\cdots\!91}{49\!\cdots\!00}a^{8}-\frac{88\!\cdots\!37}{40\!\cdots\!00}a^{7}+\frac{16\!\cdots\!47}{30\!\cdots\!50}a^{6}-\frac{86\!\cdots\!89}{74\!\cdots\!00}a^{5}-\frac{14\!\cdots\!11}{20\!\cdots\!00}a^{4}+\frac{10\!\cdots\!31}{30\!\cdots\!50}a^{3}+\frac{25\!\cdots\!89}{68\!\cdots\!00}a^{2}-\frac{16\!\cdots\!63}{81\!\cdots\!00}a-\frac{49\!\cdots\!46}{17\!\cdots\!75}$, $\frac{11\!\cdots\!09}{44\!\cdots\!00}a^{21}-\frac{27\!\cdots\!23}{11\!\cdots\!00}a^{20}-\frac{23\!\cdots\!91}{11\!\cdots\!00}a^{19}+\frac{11\!\cdots\!21}{58\!\cdots\!00}a^{18}+\frac{58\!\cdots\!31}{14\!\cdots\!00}a^{17}-\frac{78\!\cdots\!99}{15\!\cdots\!00}a^{16}-\frac{26\!\cdots\!51}{11\!\cdots\!00}a^{15}+\frac{42\!\cdots\!83}{61\!\cdots\!00}a^{14}-\frac{92\!\cdots\!69}{49\!\cdots\!00}a^{13}-\frac{61\!\cdots\!21}{11\!\cdots\!00}a^{12}+\frac{22\!\cdots\!33}{65\!\cdots\!00}a^{11}+\frac{46\!\cdots\!19}{19\!\cdots\!00}a^{10}-\frac{72\!\cdots\!49}{32\!\cdots\!00}a^{9}-\frac{51\!\cdots\!49}{78\!\cdots\!00}a^{8}+\frac{50\!\cdots\!57}{65\!\cdots\!00}a^{7}+\frac{12\!\cdots\!63}{12\!\cdots\!00}a^{6}-\frac{44\!\cdots\!93}{29\!\cdots\!00}a^{5}-\frac{11\!\cdots\!89}{16\!\cdots\!00}a^{4}+\frac{61\!\cdots\!57}{49\!\cdots\!00}a^{3}+\frac{16\!\cdots\!23}{10\!\cdots\!50}a^{2}-\frac{27\!\cdots\!83}{81\!\cdots\!00}a-\frac{72\!\cdots\!67}{18\!\cdots\!00}$, $\frac{13\!\cdots\!01}{14\!\cdots\!00}a^{21}-\frac{15\!\cdots\!19}{26\!\cdots\!80}a^{20}-\frac{20\!\cdots\!09}{24\!\cdots\!00}a^{19}+\frac{49\!\cdots\!07}{98\!\cdots\!00}a^{18}+\frac{13\!\cdots\!81}{49\!\cdots\!00}a^{17}-\frac{34\!\cdots\!01}{22\!\cdots\!00}a^{16}-\frac{21\!\cdots\!67}{49\!\cdots\!00}a^{15}+\frac{48\!\cdots\!37}{20\!\cdots\!00}a^{14}+\frac{10\!\cdots\!21}{27\!\cdots\!00}a^{13}-\frac{41\!\cdots\!51}{19\!\cdots\!00}a^{12}-\frac{35\!\cdots\!93}{16\!\cdots\!00}a^{11}+\frac{13\!\cdots\!63}{10\!\cdots\!00}a^{10}+\frac{42\!\cdots\!11}{68\!\cdots\!00}a^{9}-\frac{29\!\cdots\!07}{65\!\cdots\!00}a^{8}-\frac{37\!\cdots\!31}{68\!\cdots\!00}a^{7}+\frac{33\!\cdots\!77}{32\!\cdots\!60}a^{6}-\frac{12\!\cdots\!69}{62\!\cdots\!00}a^{5}-\frac{63\!\cdots\!91}{45\!\cdots\!00}a^{4}+\frac{31\!\cdots\!16}{51\!\cdots\!25}a^{3}+\frac{17\!\cdots\!31}{22\!\cdots\!00}a^{2}-\frac{28\!\cdots\!11}{68\!\cdots\!50}a-\frac{27\!\cdots\!49}{45\!\cdots\!00}$, $\frac{23\!\cdots\!71}{78\!\cdots\!00}a^{21}-\frac{46\!\cdots\!03}{23\!\cdots\!00}a^{20}-\frac{27\!\cdots\!69}{98\!\cdots\!00}a^{19}+\frac{68\!\cdots\!19}{39\!\cdots\!00}a^{18}+\frac{15\!\cdots\!29}{15\!\cdots\!80}a^{17}-\frac{15\!\cdots\!19}{27\!\cdots\!00}a^{16}-\frac{24\!\cdots\!13}{13\!\cdots\!00}a^{15}+\frac{17\!\cdots\!11}{19\!\cdots\!00}a^{14}+\frac{23\!\cdots\!39}{10\!\cdots\!12}a^{13}-\frac{21\!\cdots\!61}{26\!\cdots\!00}a^{12}-\frac{16\!\cdots\!21}{98\!\cdots\!00}a^{11}+\frac{60\!\cdots\!87}{13\!\cdots\!00}a^{10}+\frac{42\!\cdots\!81}{52\!\cdots\!60}a^{9}-\frac{14\!\cdots\!69}{87\!\cdots\!00}a^{8}-\frac{33\!\cdots\!01}{13\!\cdots\!00}a^{7}+\frac{38\!\cdots\!33}{10\!\cdots\!00}a^{6}+\frac{29\!\cdots\!41}{59\!\cdots\!00}a^{5}-\frac{43\!\cdots\!19}{10\!\cdots\!00}a^{4}-\frac{10\!\cdots\!77}{21\!\cdots\!40}a^{3}+\frac{11\!\cdots\!11}{81\!\cdots\!00}a^{2}+\frac{46\!\cdots\!17}{27\!\cdots\!00}a+\frac{96\!\cdots\!63}{54\!\cdots\!00}$, $\frac{16\!\cdots\!29}{22\!\cdots\!00}a^{21}-\frac{17\!\cdots\!69}{35\!\cdots\!00}a^{20}-\frac{38\!\cdots\!83}{58\!\cdots\!00}a^{19}+\frac{81\!\cdots\!19}{19\!\cdots\!00}a^{18}+\frac{15\!\cdots\!17}{73\!\cdots\!60}a^{17}-\frac{49\!\cdots\!17}{40\!\cdots\!00}a^{16}-\frac{19\!\cdots\!87}{58\!\cdots\!00}a^{15}+\frac{13\!\cdots\!27}{73\!\cdots\!00}a^{14}+\frac{57\!\cdots\!59}{18\!\cdots\!00}a^{13}-\frac{17\!\cdots\!69}{11\!\cdots\!00}a^{12}-\frac{10\!\cdots\!87}{58\!\cdots\!00}a^{11}+\frac{16\!\cdots\!91}{19\!\cdots\!00}a^{10}+\frac{51\!\cdots\!91}{78\!\cdots\!84}a^{9}-\frac{11\!\cdots\!81}{39\!\cdots\!00}a^{8}-\frac{26\!\cdots\!53}{19\!\cdots\!00}a^{7}+\frac{17\!\cdots\!51}{24\!\cdots\!00}a^{6}+\frac{10\!\cdots\!33}{89\!\cdots\!00}a^{5}-\frac{55\!\cdots\!99}{54\!\cdots\!00}a^{4}+\frac{58\!\cdots\!49}{98\!\cdots\!00}a^{3}+\frac{45\!\cdots\!09}{61\!\cdots\!00}a^{2}-\frac{69\!\cdots\!43}{81\!\cdots\!00}a-\frac{15\!\cdots\!71}{81\!\cdots\!00}$, $\frac{33\!\cdots\!73}{17\!\cdots\!00}a^{21}-\frac{29\!\cdots\!37}{35\!\cdots\!00}a^{20}-\frac{15\!\cdots\!19}{78\!\cdots\!40}a^{19}+\frac{38\!\cdots\!53}{58\!\cdots\!00}a^{18}+\frac{14\!\cdots\!99}{19\!\cdots\!00}a^{17}-\frac{70\!\cdots\!09}{40\!\cdots\!00}a^{16}-\frac{16\!\cdots\!71}{11\!\cdots\!00}a^{15}+\frac{80\!\cdots\!39}{36\!\cdots\!00}a^{14}+\frac{29\!\cdots\!47}{19\!\cdots\!00}a^{13}-\frac{18\!\cdots\!93}{11\!\cdots\!00}a^{12}-\frac{57\!\cdots\!49}{58\!\cdots\!00}a^{11}+\frac{13\!\cdots\!27}{19\!\cdots\!00}a^{10}+\frac{77\!\cdots\!43}{19\!\cdots\!00}a^{9}-\frac{16\!\cdots\!81}{78\!\cdots\!00}a^{8}-\frac{19\!\cdots\!97}{19\!\cdots\!00}a^{7}+\frac{21\!\cdots\!71}{49\!\cdots\!00}a^{6}+\frac{14\!\cdots\!73}{89\!\cdots\!00}a^{5}-\frac{94\!\cdots\!07}{16\!\cdots\!00}a^{4}-\frac{65\!\cdots\!79}{49\!\cdots\!00}a^{3}+\frac{26\!\cdots\!13}{12\!\cdots\!00}a^{2}+\frac{11\!\cdots\!97}{27\!\cdots\!00}a+\frac{72\!\cdots\!97}{16\!\cdots\!00}$, $\frac{37\!\cdots\!29}{35\!\cdots\!00}a^{21}-\frac{38\!\cdots\!99}{11\!\cdots\!00}a^{20}-\frac{32\!\cdots\!01}{29\!\cdots\!00}a^{19}+\frac{13\!\cdots\!17}{58\!\cdots\!00}a^{18}+\frac{48\!\cdots\!57}{11\!\cdots\!00}a^{17}-\frac{82\!\cdots\!13}{18\!\cdots\!40}a^{16}-\frac{44\!\cdots\!93}{58\!\cdots\!00}a^{15}+\frac{33\!\cdots\!21}{98\!\cdots\!00}a^{14}+\frac{29\!\cdots\!67}{39\!\cdots\!00}a^{13}-\frac{28\!\cdots\!53}{23\!\cdots\!00}a^{12}-\frac{11\!\cdots\!37}{26\!\cdots\!28}a^{11}+\frac{11\!\cdots\!57}{39\!\cdots\!00}a^{10}+\frac{21\!\cdots\!11}{13\!\cdots\!00}a^{9}-\frac{40\!\cdots\!29}{39\!\cdots\!00}a^{8}-\frac{26\!\cdots\!41}{65\!\cdots\!00}a^{7}+\frac{20\!\cdots\!01}{49\!\cdots\!00}a^{6}+\frac{17\!\cdots\!57}{29\!\cdots\!00}a^{5}-\frac{14\!\cdots\!89}{16\!\cdots\!00}a^{4}-\frac{22\!\cdots\!57}{49\!\cdots\!00}a^{3}+\frac{14\!\cdots\!27}{40\!\cdots\!00}a^{2}+\frac{26\!\cdots\!39}{20\!\cdots\!00}a+\frac{12\!\cdots\!09}{90\!\cdots\!00}$, $\frac{49\!\cdots\!13}{14\!\cdots\!00}a^{21}-\frac{48\!\cdots\!73}{23\!\cdots\!00}a^{20}-\frac{63\!\cdots\!31}{19\!\cdots\!00}a^{19}+\frac{39\!\cdots\!23}{21\!\cdots\!00}a^{18}+\frac{27\!\cdots\!49}{24\!\cdots\!00}a^{17}-\frac{73\!\cdots\!93}{13\!\cdots\!00}a^{16}-\frac{37\!\cdots\!39}{19\!\cdots\!00}a^{15}+\frac{81\!\cdots\!63}{98\!\cdots\!00}a^{14}+\frac{15\!\cdots\!79}{81\!\cdots\!00}a^{13}-\frac{29\!\cdots\!81}{39\!\cdots\!00}a^{12}-\frac{23\!\cdots\!23}{19\!\cdots\!00}a^{11}+\frac{28\!\cdots\!09}{65\!\cdots\!00}a^{10}+\frac{14\!\cdots\!99}{32\!\cdots\!00}a^{9}-\frac{21\!\cdots\!97}{13\!\cdots\!00}a^{8}-\frac{64\!\cdots\!13}{65\!\cdots\!00}a^{7}+\frac{25\!\cdots\!83}{65\!\cdots\!00}a^{6}+\frac{31\!\cdots\!59}{29\!\cdots\!00}a^{5}-\frac{20\!\cdots\!91}{34\!\cdots\!50}a^{4}+\frac{58\!\cdots\!21}{16\!\cdots\!00}a^{3}+\frac{35\!\cdots\!13}{81\!\cdots\!00}a^{2}-\frac{91\!\cdots\!01}{21\!\cdots\!44}a-\frac{29\!\cdots\!37}{27\!\cdots\!00}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 852811169305000000000000000 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{14}\cdot(2\pi)^{4}\cdot 852811169305000000000000000 \cdot 1}{2\cdot\sqrt{3050063118130674940421242764072714852846127200026846650975238750208}}\cr\approx \mathstrut & 6.23458978130867 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^22 - 6*x^21 - 96*x^20 + 516*x^19 + 3315*x^18 - 15678*x^17 - 58926*x^16 + 239076*x^15 + 605475*x^14 - 2137974*x^13 - 3792132*x^12 + 12206088*x^11 + 14763681*x^10 - 46019430*x^9 - 34917642*x^8 + 112918896*x^7 + 44592120*x^6 - 169280496*x^5 - 19547856*x^4 + 127652544*x^3 + 2781648*x^2 - 33869664*x - 3859488)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^22 - 6*x^21 - 96*x^20 + 516*x^19 + 3315*x^18 - 15678*x^17 - 58926*x^16 + 239076*x^15 + 605475*x^14 - 2137974*x^13 - 3792132*x^12 + 12206088*x^11 + 14763681*x^10 - 46019430*x^9 - 34917642*x^8 + 112918896*x^7 + 44592120*x^6 - 169280496*x^5 - 19547856*x^4 + 127652544*x^3 + 2781648*x^2 - 33869664*x - 3859488, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^22 - 6*x^21 - 96*x^20 + 516*x^19 + 3315*x^18 - 15678*x^17 - 58926*x^16 + 239076*x^15 + 605475*x^14 - 2137974*x^13 - 3792132*x^12 + 12206088*x^11 + 14763681*x^10 - 46019430*x^9 - 34917642*x^8 + 112918896*x^7 + 44592120*x^6 - 169280496*x^5 - 19547856*x^4 + 127652544*x^3 + 2781648*x^2 - 33869664*x - 3859488);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^22 - 6*x^21 - 96*x^20 + 516*x^19 + 3315*x^18 - 15678*x^17 - 58926*x^16 + 239076*x^15 + 605475*x^14 - 2137974*x^13 - 3792132*x^12 + 12206088*x^11 + 14763681*x^10 - 46019430*x^9 - 34917642*x^8 + 112918896*x^7 + 44592120*x^6 - 169280496*x^5 - 19547856*x^4 + 127652544*x^3 + 2781648*x^2 - 33869664*x - 3859488);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2\times A_{11}$ (as 22T46):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 39916800
The 62 conjugacy class representatives for $C_2\times A_{11}$
Character table for $C_2\times A_{11}$

Intermediate fields

\(\Q(\sqrt{3}) \), 11.7.63019333158425674204677255696384.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.6.0.1}{6} }{,}\,{\href{/padicField/5.4.0.1}{4} }^{2}{,}\,{\href{/padicField/5.2.0.1}{2} }^{4}$ R ${\href{/padicField/11.11.0.1}{11} }^{2}$ ${\href{/padicField/13.9.0.1}{9} }^{2}{,}\,{\href{/padicField/13.1.0.1}{1} }^{4}$ $22$ ${\href{/padicField/19.10.0.1}{10} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }$ R ${\href{/padicField/29.6.0.1}{6} }^{3}{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}$ $22$ ${\href{/padicField/37.6.0.1}{6} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }^{6}$ ${\href{/padicField/41.14.0.1}{14} }{,}\,{\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.2.0.1}{2} }$ ${\href{/padicField/43.6.0.1}{6} }^{2}{,}\,{\href{/padicField/43.4.0.1}{4} }^{2}{,}\,{\href{/padicField/43.2.0.1}{2} }$ ${\href{/padicField/47.9.0.1}{9} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }^{4}$ ${\href{/padicField/53.10.0.1}{10} }{,}\,{\href{/padicField/53.4.0.1}{4} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}$ ${\href{/padicField/59.6.0.1}{6} }^{2}{,}\,{\href{/padicField/59.4.0.1}{4} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.2.2.2$x^{2} + 2 x + 6$$2$$1$$2$$C_2$$[2]$
2.8.12.13$x^{8} + 8 x^{7} + 28 x^{6} + 58 x^{5} + 87 x^{4} + 98 x^{3} + 58 x^{2} - 2 x + 1$$4$$2$$12$$D_4$$[2, 2]^{2}$
2.12.18.79$x^{12} + 2 x^{9} + 2 x^{7} + 2 x^{2} + 6$$12$$1$$18$$C_2 \times S_4$$[4/3, 4/3, 2]_{3}^{2}$
\(3\) Copy content Toggle raw display 3.2.1.1$x^{2} + 6$$2$$1$$1$$C_2$$[\ ]_{2}$
3.2.1.1$x^{2} + 6$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $18$$18$$1$$27$
\(7\) Copy content Toggle raw display 7.4.2.1$x^{4} + 12 x^{3} + 56 x^{2} + 120 x + 268$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 12 x^{3} + 56 x^{2} + 120 x + 268$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.14.0.1$x^{14} + 5 x^{7} + 6 x^{5} + 2 x^{4} + 3 x^{2} + 6 x + 3$$1$$14$$0$$C_{14}$$[\ ]^{14}$
\(23\) Copy content Toggle raw display 23.2.1.2$x^{2} + 23$$2$$1$$1$$C_2$$[\ ]_{2}$
23.2.1.2$x^{2} + 23$$2$$1$$1$$C_2$$[\ ]_{2}$
23.2.1.2$x^{2} + 23$$2$$1$$1$$C_2$$[\ ]_{2}$
23.2.1.2$x^{2} + 23$$2$$1$$1$$C_2$$[\ ]_{2}$
23.7.0.1$x^{7} + 21 x + 18$$1$$7$$0$$C_7$$[\ ]^{7}$
23.7.0.1$x^{7} + 21 x + 18$$1$$7$$0$$C_7$$[\ ]^{7}$
\(137\) Copy content Toggle raw display 137.2.0.1$x^{2} + 131 x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
137.10.8.1$x^{10} + 655 x^{9} + 171625 x^{8} + 22488770 x^{7} + 1474044185 x^{6} + 38714410755 x^{5} + 4422222290 x^{4} + 225901280 x^{3} + 3082903315 x^{2} + 201591447850 x + 5280771081809$$5$$2$$8$$F_5$$[\ ]_{5}^{4}$
137.10.8.1$x^{10} + 655 x^{9} + 171625 x^{8} + 22488770 x^{7} + 1474044185 x^{6} + 38714410755 x^{5} + 4422222290 x^{4} + 225901280 x^{3} + 3082903315 x^{2} + 201591447850 x + 5280771081809$$5$$2$$8$$F_5$$[\ ]_{5}^{4}$