Normalized defining polynomial
\( x^{22} - 33 x^{20} - 44 x^{19} + 385 x^{18} + 990 x^{17} - 1815 x^{16} - 7436 x^{15} + 902 x^{14} + 23584 x^{13} + 14058 x^{12} - 48740 x^{11} - 23034 x^{10} + 158444 x^{9} + 133782 x^{8} - 268796 x^{7} - 608399 x^{6} - 263560 x^{5} + 354255 x^{4} + 374352 x^{3} + 107129 x^{2} + 9086 x - 63 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(29705036799591810015216573102902768304128=2^{24}\cdot 7^{11}\cdot 11^{23}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $69.13$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{6}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{14} - \frac{1}{4} a^{13} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} + \frac{1}{4} a^{6} + \frac{1}{4} a^{5} + \frac{1}{4} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{4} a^{16} - \frac{1}{4}$, $\frac{1}{4} a^{17} - \frac{1}{4} a$, $\frac{1}{4} a^{18} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{19} - \frac{1}{4} a^{3}$, $\frac{1}{4} a^{20} - \frac{1}{4} a^{4}$, $\frac{1}{1985273370273428093644049913261263382346115379739743604} a^{21} + \frac{22915635089988853745852590229895647782187300601729861}{496318342568357023411012478315315845586528844934935901} a^{20} + \frac{56567440048540287587504712342148206479927182906638597}{1985273370273428093644049913261263382346115379739743604} a^{19} - \frac{235537875002536067146445233924380420392495478187415953}{1985273370273428093644049913261263382346115379739743604} a^{18} + \frac{81686179612151272393590517657009893656084434961156573}{992636685136714046822024956630631691173057689869871802} a^{17} - \frac{34004028935523018218576358903920602848169777221994819}{992636685136714046822024956630631691173057689869871802} a^{16} + \frac{8683600485724517143446654836985376319515662214945073}{1985273370273428093644049913261263382346115379739743604} a^{15} - \frac{484309851456503259362284993797044870259168480625297489}{1985273370273428093644049913261263382346115379739743604} a^{14} - \frac{395466411253563013645449457238684347467464004841900189}{1985273370273428093644049913261263382346115379739743604} a^{13} - \frac{364026854780770650394505631725391547408287598042075195}{1985273370273428093644049913261263382346115379739743604} a^{12} + \frac{45035060391533189962853422217371311302440128721548213}{1985273370273428093644049913261263382346115379739743604} a^{11} - \frac{492748731539232700739084068280110161068994438873037931}{1985273370273428093644049913261263382346115379739743604} a^{10} - \frac{321589889597387609865348349423019552255866440128892421}{1985273370273428093644049913261263382346115379739743604} a^{9} + \frac{173115616776092504246686634398042120935102899898911655}{1985273370273428093644049913261263382346115379739743604} a^{8} - \frac{652551712119993994902879574897842358055855045094146589}{1985273370273428093644049913261263382346115379739743604} a^{7} + \frac{769825635263577441939266525754455662606335592032857557}{1985273370273428093644049913261263382346115379739743604} a^{6} + \frac{86993001406128857291557582607979457474470954642802666}{496318342568357023411012478315315845586528844934935901} a^{5} - \frac{590011970258859109403610057705023118996906359126035329}{1985273370273428093644049913261263382346115379739743604} a^{4} + \frac{245264969726311460301848537506035057762449460600614451}{992636685136714046822024956630631691173057689869871802} a^{3} + \frac{133808153844664420859091237884286905150376665747137232}{496318342568357023411012478315315845586528844934935901} a^{2} - \frac{489344756980919894039302440814695112858295822144090941}{1985273370273428093644049913261263382346115379739743604} a - \frac{295517550289555007751904577641096467610064685459086745}{1985273370273428093644049913261263382346115379739743604}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7150261277700 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 112640 |
| The 44 conjugacy class representatives for t22n35 |
| Character table for t22n35 is not computed |
Intermediate fields
| 11.11.4910318845910094848.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ | $20{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | $20{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $7$ | 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.10.5.1 | $x^{10} - 98 x^{6} + 2401 x^{2} - 268912$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 7.10.5.1 | $x^{10} - 98 x^{6} + 2401 x^{2} - 268912$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 11 | Data not computed | ||||||