Normalized defining polynomial
\( x^{22} - 33 x^{20} + 99 x^{18} + 6941 x^{16} - 92950 x^{14} + 428230 x^{12} - 610082 x^{10} - 138182 x^{8} + 643797 x^{6} - 67749 x^{4} - 94897 x^{2} - 567 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2765268880252910314143797350670221340311552=2^{34}\cdot 7^{11}\cdot 11^{22}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $84.95$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{44} a^{12} + \frac{2}{11} a^{10} + \frac{1}{44} a^{8} - \frac{2}{11} a^{6} + \frac{3}{44} a^{4} - \frac{4}{11} a^{2} - \frac{17}{44}$, $\frac{1}{44} a^{13} - \frac{3}{44} a^{11} - \frac{1}{4} a^{10} - \frac{5}{22} a^{9} - \frac{1}{4} a^{8} - \frac{2}{11} a^{7} + \frac{3}{44} a^{5} - \frac{5}{44} a^{3} + \frac{1}{4} a^{2} - \frac{3}{22} a + \frac{1}{4}$, $\frac{1}{44} a^{14} + \frac{3}{44} a^{10} + \frac{3}{22} a^{8} + \frac{1}{44} a^{6} - \frac{9}{22} a^{4} - \frac{21}{44} a^{2} + \frac{1}{11}$, $\frac{1}{44} a^{15} + \frac{3}{44} a^{11} + \frac{3}{22} a^{9} + \frac{1}{44} a^{7} - \frac{9}{22} a^{5} - \frac{21}{44} a^{3} + \frac{1}{11} a$, $\frac{1}{88} a^{16} + \frac{1}{22} a^{10} - \frac{1}{44} a^{8} - \frac{2}{11} a^{6} - \frac{1}{2} a^{5} + \frac{9}{22} a^{4} - \frac{9}{22} a^{2} - \frac{1}{2} a + \frac{29}{88}$, $\frac{1}{88} a^{17} + \frac{1}{22} a^{11} - \frac{1}{44} a^{9} - \frac{2}{11} a^{7} + \frac{9}{22} a^{5} - \frac{1}{2} a^{4} - \frac{9}{22} a^{3} + \frac{29}{88} a - \frac{1}{2}$, $\frac{1}{88} a^{18} + \frac{5}{44} a^{10} - \frac{5}{22} a^{8} - \frac{5}{22} a^{6} - \frac{1}{2} a^{5} + \frac{5}{11} a^{4} - \frac{39}{88} a^{2} - \frac{1}{2} a - \frac{5}{22}$, $\frac{1}{88} a^{19} + \frac{5}{44} a^{11} - \frac{5}{22} a^{9} - \frac{5}{22} a^{7} + \frac{5}{11} a^{5} - \frac{1}{2} a^{4} - \frac{39}{88} a^{3} - \frac{5}{22} a - \frac{1}{2}$, $\frac{1}{512541914722532380626952} a^{20} + \frac{2079981811649086418663}{512541914722532380626952} a^{18} + \frac{84702701004049358261}{128135478680633095156738} a^{16} + \frac{1348061954828568602267}{256270957361266190313476} a^{14} + \frac{860813906932981082999}{128135478680633095156738} a^{12} - \frac{9335627257374986118857}{128135478680633095156738} a^{10} - \frac{24407029464080995249521}{256270957361266190313476} a^{8} + \frac{61426395592137934223539}{256270957361266190313476} a^{6} - \frac{209477234587880640236553}{512541914722532380626952} a^{4} + \frac{73217059471507455665769}{512541914722532380626952} a^{2} - \frac{64556293498193124006831}{256270957361266190313476}$, $\frac{1}{9225754465005582851285136} a^{21} - \frac{1}{1025083829445064761253904} a^{20} + \frac{3570863449320877148893}{768812872083798570940428} a^{19} + \frac{936089532094922658479}{256270957361266190313476} a^{18} + \frac{4567687820468626311233}{1025083829445064761253904} a^{17} + \frac{5485529136012579619535}{1025083829445064761253904} a^{16} + \frac{15234880827486226932581}{2306438616251395712821284} a^{15} + \frac{559534748150026056289}{64067739340316547578369} a^{14} - \frac{15751392006220368991739}{4612877232502791425642568} a^{13} + \frac{4102712126162814886581}{512541914722532380626952} a^{12} + \frac{21389695474893968189951}{209676237841035973892844} a^{11} - \frac{2313052622682567986301}{256270957361266190313476} a^{10} + \frac{965730760340811103688909}{4612877232502791425642568} a^{9} - \frac{127025808976667208117533}{512541914722532380626952} a^{8} + \frac{452977843448155303423747}{2306438616251395712821284} a^{7} - \frac{19724853853056066345319}{128135478680633095156738} a^{6} + \frac{221347029193666342848701}{1025083829445064761253904} a^{5} + \frac{221125914467938194341711}{1025083829445064761253904} a^{4} - \frac{27960365540739278502311}{192203218020949642735107} a^{3} - \frac{26781362238328928492068}{64067739340316547578369} a^{2} - \frac{729019600819350284429299}{9225754465005582851285136} a - \frac{482443106706635342507133}{1025083829445064761253904}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 62812267559000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 225280 |
| The 88 conjugacy class representatives for t22n37 are not computed |
| Character table for t22n37 is not computed |
Intermediate fields
| 11.11.4910318845910094848.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | $22$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | $20{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $7$ | 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.10.5.1 | $x^{10} - 98 x^{6} + 2401 x^{2} - 268912$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 7.10.5.1 | $x^{10} - 98 x^{6} + 2401 x^{2} - 268912$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 11 | Data not computed | ||||||