Normalized defining polynomial
\( x^{22} - 11 x^{20} - 44 x^{19} - 33 x^{18} + 748 x^{17} + 869 x^{16} - 3630 x^{15} - 6578 x^{14} + 7018 x^{13} + 25894 x^{12} - 17722 x^{11} - 24992 x^{10} - 3784 x^{9} + 25476 x^{8} + 25014 x^{7} - 29799 x^{6} - 9218 x^{5} + 10329 x^{4} + 1870 x^{3} - 1133 x^{2} - 264 x - 13 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(24689900716543842090569619202412690538496=2^{30}\cdot 7^{10}\cdot 11^{22}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $68.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{21180161605840128289448101418576704849087} a^{21} - \frac{3838373469040491566073883451844350840471}{21180161605840128289448101418576704849087} a^{20} - \frac{5669882522763287141706392069416882871307}{21180161605840128289448101418576704849087} a^{19} - \frac{6194351916714269767752163680925264579187}{21180161605840128289448101418576704849087} a^{18} + \frac{3887263749390494629759547511254845886309}{21180161605840128289448101418576704849087} a^{17} - \frac{3830017215142402004902873385321707048692}{21180161605840128289448101418576704849087} a^{16} + \frac{4220021358519061539848355444474820114567}{21180161605840128289448101418576704849087} a^{15} + \frac{6517074346841309167098958056981649155957}{21180161605840128289448101418576704849087} a^{14} + \frac{7928262153652866948442093698099524665938}{21180161605840128289448101418576704849087} a^{13} - \frac{835169363995742058956095584860885574731}{21180161605840128289448101418576704849087} a^{12} - \frac{3100875549789900484873688802062506847692}{21180161605840128289448101418576704849087} a^{11} - \frac{4111667540740849352756720736184882399142}{21180161605840128289448101418576704849087} a^{10} + \frac{2722340994673180356871608597975521630286}{21180161605840128289448101418576704849087} a^{9} - \frac{1928138586646190097791323855879116284138}{21180161605840128289448101418576704849087} a^{8} + \frac{1584006054511863116315094106503420413432}{21180161605840128289448101418576704849087} a^{7} - \frac{7744530540463881829546141388280060660562}{21180161605840128289448101418576704849087} a^{6} - \frac{3351278755246706172999189564620979283346}{21180161605840128289448101418576704849087} a^{5} + \frac{668756108182740993104392502005599898137}{21180161605840128289448101418576704849087} a^{4} + \frac{6687269317632452579863109404240327536906}{21180161605840128289448101418576704849087} a^{3} + \frac{8591116245472700606942066092650820449252}{21180161605840128289448101418576704849087} a^{2} - \frac{3209483604351854855604961372676960538137}{21180161605840128289448101418576704849087} a - \frac{9978120228775245364996357040733102249527}{21180161605840128289448101418576704849087}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12066789286700 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 112640 |
| The 44 conjugacy class representatives for t22n34 |
| Character table for t22n34 is not computed |
Intermediate fields
| 11.11.4910318845910094848.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | $20{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | R | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 7.10.5.1 | $x^{10} - 98 x^{6} + 2401 x^{2} - 268912$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 7.10.5.1 | $x^{10} - 98 x^{6} + 2401 x^{2} - 268912$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $11$ | 11.11.11.6 | $x^{11} + 11 x + 11$ | $11$ | $1$ | $11$ | $F_{11}$ | $[11/10]_{10}$ |
| 11.11.11.6 | $x^{11} + 11 x + 11$ | $11$ | $1$ | $11$ | $F_{11}$ | $[11/10]_{10}$ | |