Normalized defining polynomial
\( x^{22} - 11 x^{20} - 55 x^{18} - 154 x^{17} + 517 x^{16} + 1628 x^{15} + 3058 x^{14} + 2332 x^{13} - 6160 x^{12} - 33934 x^{11} - 105996 x^{10} - 79684 x^{9} + 136972 x^{8} + 243364 x^{7} + 221111 x^{6} + 106920 x^{5} - 143297 x^{4} - 191466 x^{3} - 62843 x^{2} - 5258 x + 245 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(24689900716543842090569619202412690538496=2^{30}\cdot 7^{10}\cdot 11^{22}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $68.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{11} a^{11} - \frac{5}{11}$, $\frac{1}{11} a^{12} - \frac{5}{11} a$, $\frac{1}{11} a^{13} - \frac{5}{11} a^{2}$, $\frac{1}{11} a^{14} - \frac{5}{11} a^{3}$, $\frac{1}{11} a^{15} - \frac{5}{11} a^{4}$, $\frac{1}{11} a^{16} - \frac{5}{11} a^{5}$, $\frac{1}{11} a^{17} - \frac{5}{11} a^{6}$, $\frac{1}{11} a^{18} - \frac{5}{11} a^{7}$, $\frac{1}{11} a^{19} - \frac{5}{11} a^{8}$, $\frac{1}{11} a^{20} - \frac{5}{11} a^{9}$, $\frac{1}{248275810313962505053577226696411109734376658723} a^{21} + \frac{1411276697711643337848077053628236374578181210}{248275810313962505053577226696411109734376658723} a^{20} + \frac{9531054304456793022034784193944440579012037618}{248275810313962505053577226696411109734376658723} a^{19} - \frac{1862752259059696705869810663669830726692235940}{248275810313962505053577226696411109734376658723} a^{18} + \frac{9699240203150452438970937798801949924340112033}{248275810313962505053577226696411109734376658723} a^{17} - \frac{988616965394466063432732832428146559836989072}{22570528210360227732143384245128282703125150793} a^{16} - \frac{543594976297602135445359090278489752596135356}{248275810313962505053577226696411109734376658723} a^{15} + \frac{5501651327502139656727970965710884166249471248}{248275810313962505053577226696411109734376658723} a^{14} + \frac{11088862346583235308199625276309280802157583204}{248275810313962505053577226696411109734376658723} a^{13} + \frac{6538008914782736265861186046035695210681138235}{248275810313962505053577226696411109734376658723} a^{12} + \frac{7104513959121096147068205124528933529060915833}{248275810313962505053577226696411109734376658723} a^{11} - \frac{119024743174494727044628269080103784244552893033}{248275810313962505053577226696411109734376658723} a^{10} + \frac{33715007220223681089328079830939658933642332091}{248275810313962505053577226696411109734376658723} a^{9} + \frac{42033754287261831972371203823635711617554570882}{248275810313962505053577226696411109734376658723} a^{8} - \frac{101964182026484490889662737874574717918880044958}{248275810313962505053577226696411109734376658723} a^{7} + \frac{3424294969191771635231264543332107281412791823}{248275810313962505053577226696411109734376658723} a^{6} - \frac{8776694970047476862213151276072573797451207378}{22570528210360227732143384245128282703125150793} a^{5} - \frac{106882297273077897033864927294924185452452670110}{248275810313962505053577226696411109734376658723} a^{4} + \frac{61623252457540310263170555281689327321488622882}{248275810313962505053577226696411109734376658723} a^{3} + \frac{121771136800679214059990087926428370933176478154}{248275810313962505053577226696411109734376658723} a^{2} + \frac{109057272598778363746917398245180686119450618694}{248275810313962505053577226696411109734376658723} a + \frac{107534649677662686235377879083595571563242340856}{248275810313962505053577226696411109734376658723}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15569759718900 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 112640 |
| The 44 conjugacy class representatives for t22n34 |
| Character table for t22n34 is not computed |
Intermediate fields
| 11.11.4910318845910094848.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | R | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | $20{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 7.10.5.1 | $x^{10} - 98 x^{6} + 2401 x^{2} - 268912$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 7.10.5.1 | $x^{10} - 98 x^{6} + 2401 x^{2} - 268912$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $11$ | 11.11.11.6 | $x^{11} + 11 x + 11$ | $11$ | $1$ | $11$ | $F_{11}$ | $[11/10]_{10}$ |
| 11.11.11.6 | $x^{11} + 11 x + 11$ | $11$ | $1$ | $11$ | $F_{11}$ | $[11/10]_{10}$ | |