Normalized defining polynomial
\( x^{22} - 4 x^{21} - 15 x^{20} + 64 x^{19} + 79 x^{18} - 540 x^{17} + 528 x^{16} + 1865 x^{15} - 4894 x^{14} - 1811 x^{13} + 8981 x^{12} + 4163 x^{11} - 6857 x^{10} - 8000 x^{9} + 2421 x^{8} + 4419 x^{7} - 158 x^{6} - 547 x^{5} - 172 x^{4} - 39 x^{3} + 52 x^{2} - 2 x - 1 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(22661033510180079603495293971842498241=1297^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.88$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $1297$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{5} a^{18} + \frac{1}{5} a^{17} - \frac{1}{5} a^{16} + \frac{1}{5} a^{15} + \frac{1}{5} a^{14} - \frac{1}{5} a^{13} + \frac{2}{5} a^{12} + \frac{2}{5} a^{11} - \frac{1}{5} a^{10} - \frac{1}{5} a^{8} + \frac{1}{5} a^{7} + \frac{1}{5} a^{6} + \frac{1}{5} a^{5} - \frac{1}{5} a^{3} - \frac{2}{5} a^{2} + \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{5} a^{19} - \frac{2}{5} a^{17} + \frac{2}{5} a^{16} - \frac{2}{5} a^{14} - \frac{2}{5} a^{13} + \frac{2}{5} a^{11} + \frac{1}{5} a^{10} - \frac{1}{5} a^{9} + \frac{2}{5} a^{8} - \frac{1}{5} a^{5} - \frac{1}{5} a^{4} - \frac{1}{5} a^{3} - \frac{1}{5} a^{2} - \frac{2}{5}$, $\frac{1}{55} a^{20} - \frac{2}{55} a^{19} - \frac{1}{55} a^{18} - \frac{18}{55} a^{17} + \frac{5}{11} a^{16} - \frac{1}{5} a^{15} - \frac{12}{55} a^{14} - \frac{7}{55} a^{13} + \frac{24}{55} a^{12} + \frac{14}{55} a^{11} - \frac{19}{55} a^{10} - \frac{1}{55} a^{9} + \frac{3}{11} a^{8} - \frac{24}{55} a^{7} + \frac{5}{11} a^{6} + \frac{2}{5} a^{5} + \frac{6}{55} a^{4} + \frac{3}{11} a^{3} + \frac{2}{11} a^{2} + \frac{4}{11} a - \frac{14}{55}$, $\frac{1}{63539466822236707446773283615947965} a^{21} + \frac{575317692995571441620391113224306}{63539466822236707446773283615947965} a^{20} - \frac{399819270409497589142140668395702}{5776315165657882495161207601449815} a^{19} - \frac{3489476800751803991868975246754349}{63539466822236707446773283615947965} a^{18} - \frac{2259642003891147864234855033451927}{63539466822236707446773283615947965} a^{17} - \frac{30862837068516011260018967056108808}{63539466822236707446773283615947965} a^{16} - \frac{13615057247478759938393971147153263}{63539466822236707446773283615947965} a^{15} - \frac{9069162876005418175592288337054646}{63539466822236707446773283615947965} a^{14} + \frac{90131479237271523655790164864876}{5776315165657882495161207601449815} a^{13} - \frac{1540560413232200060572674790859392}{12707893364447341489354656723189593} a^{12} - \frac{5546272908576830647873315077456493}{63539466822236707446773283615947965} a^{11} + \frac{2961253221099473579837788251489605}{12707893364447341489354656723189593} a^{10} + \frac{9049079063008073861801956783776622}{63539466822236707446773283615947965} a^{9} - \frac{19844036612891633975281326081824646}{63539466822236707446773283615947965} a^{8} + \frac{4762799958948926607999351361723177}{12707893364447341489354656723189593} a^{7} + \frac{30455556201160518507393499011278709}{63539466822236707446773283615947965} a^{6} - \frac{23576720716990160449682105610780581}{63539466822236707446773283615947965} a^{5} + \frac{25220045334067974406943389890193493}{63539466822236707446773283615947965} a^{4} - \frac{3563576900526725811526349476662147}{63539466822236707446773283615947965} a^{3} + \frac{15982031385727534112757401920384681}{63539466822236707446773283615947965} a^{2} - \frac{5144144506327331115744129697520618}{12707893364447341489354656723189593} a + \frac{6212478183007741889323662215420597}{63539466822236707446773283615947965}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 25862455945.7 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 22528 |
| The 100 conjugacy class representatives for t22n30 are not computed |
| Character table for t22n30 is not computed |
Intermediate fields
| 11.11.3670285774226257.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{5}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/13.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 1297 | Data not computed | ||||||