Normalized defining polynomial
\( x^{22} - 3 x^{21} - 24 x^{20} + 59 x^{19} + 273 x^{18} - 436 x^{17} - 1924 x^{16} + 1356 x^{15} + 5010 x^{14} + 14999 x^{13} - 9512 x^{12} - 114771 x^{11} + 18405 x^{10} + 290616 x^{9} + 69522 x^{8} - 375325 x^{7} - 259853 x^{6} + 293924 x^{5} + 260945 x^{4} - 133418 x^{3} - 93266 x^{2} + 21174 x + 11623 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(22661033510180079603495293971842498241=1297^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.88$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $1297$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{5} a^{16} - \frac{1}{5} a^{15} - \frac{1}{5} a^{13} - \frac{2}{5} a^{12} - \frac{1}{5} a^{11} - \frac{1}{5} a^{10} + \frac{2}{5} a^{9} - \frac{2}{5} a^{8} + \frac{1}{5} a^{7} + \frac{2}{5} a^{6} - \frac{1}{5} a^{5} + \frac{1}{5} a^{3} + \frac{2}{5}$, $\frac{1}{5} a^{17} - \frac{1}{5} a^{15} - \frac{1}{5} a^{14} + \frac{2}{5} a^{13} + \frac{2}{5} a^{12} - \frac{2}{5} a^{11} + \frac{1}{5} a^{10} - \frac{1}{5} a^{8} - \frac{2}{5} a^{7} + \frac{1}{5} a^{6} - \frac{1}{5} a^{5} + \frac{1}{5} a^{4} + \frac{1}{5} a^{3} + \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{5} a^{18} - \frac{2}{5} a^{15} + \frac{2}{5} a^{14} + \frac{1}{5} a^{13} + \frac{1}{5} a^{12} - \frac{1}{5} a^{10} + \frac{1}{5} a^{9} + \frac{1}{5} a^{8} + \frac{2}{5} a^{7} + \frac{1}{5} a^{6} + \frac{1}{5} a^{4} + \frac{1}{5} a^{3} + \frac{2}{5} a^{2} + \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{5} a^{19} + \frac{1}{5} a^{14} - \frac{1}{5} a^{13} + \frac{1}{5} a^{12} + \frac{2}{5} a^{11} - \frac{1}{5} a^{10} - \frac{2}{5} a^{8} - \frac{2}{5} a^{7} - \frac{1}{5} a^{6} - \frac{1}{5} a^{5} + \frac{1}{5} a^{4} - \frac{1}{5} a^{3} + \frac{2}{5} a^{2} + \frac{2}{5} a - \frac{1}{5}$, $\frac{1}{5} a^{20} + \frac{1}{5} a^{15} - \frac{1}{5} a^{14} + \frac{1}{5} a^{13} + \frac{2}{5} a^{12} - \frac{1}{5} a^{11} - \frac{2}{5} a^{9} - \frac{2}{5} a^{8} - \frac{1}{5} a^{7} - \frac{1}{5} a^{6} + \frac{1}{5} a^{5} - \frac{1}{5} a^{4} + \frac{2}{5} a^{3} + \frac{2}{5} a^{2} - \frac{1}{5} a$, $\frac{1}{6803031466628842944103786660493949144956734799703966425} a^{21} + \frac{478332954971537327261684983590772596447017749996279888}{6803031466628842944103786660493949144956734799703966425} a^{20} - \frac{420522587010408088622619716080935763524596774981495511}{6803031466628842944103786660493949144956734799703966425} a^{19} - \frac{388560025692816732756966071391829111422187016216470607}{6803031466628842944103786660493949144956734799703966425} a^{18} + \frac{425334430476762890167859804013688688893538730171890936}{6803031466628842944103786660493949144956734799703966425} a^{17} + \frac{90700669461444404824988675075949208098032356130819964}{1360606293325768588820757332098789828991346959940793285} a^{16} + \frac{2574206531914230921558657699922587826726726492312322711}{6803031466628842944103786660493949144956734799703966425} a^{15} - \frac{1485420777277479109884670801945356650006721048457801883}{6803031466628842944103786660493949144956734799703966425} a^{14} + \frac{1928946171325076873800744589611735765410402379535177807}{6803031466628842944103786660493949144956734799703966425} a^{13} - \frac{92500536239930828354911985581768056222430960334896059}{618457406057167540373071514590359013177884981791269675} a^{12} + \frac{3400627487741695165936960718067105447451128683601910879}{6803031466628842944103786660493949144956734799703966425} a^{11} + \frac{56022915444682900623954896028636313818772871139574278}{618457406057167540373071514590359013177884981791269675} a^{10} + \frac{1786788595717724209552660061551909154122858431340997538}{6803031466628842944103786660493949144956734799703966425} a^{9} + \frac{3348346543351388422669538444544632003009411629009694744}{6803031466628842944103786660493949144956734799703966425} a^{8} - \frac{2776860448818419601792060715336586391728939627170441489}{6803031466628842944103786660493949144956734799703966425} a^{7} - \frac{1736616035225468125087300321750588449012128742216244744}{6803031466628842944103786660493949144956734799703966425} a^{6} - \frac{3157607952493517714984409496847525078655130246415108337}{6803031466628842944103786660493949144956734799703966425} a^{5} + \frac{2143471065191063240237121007428348678982091686750198232}{6803031466628842944103786660493949144956734799703966425} a^{4} - \frac{601424156959086240129596560280993930630194769140505808}{6803031466628842944103786660493949144956734799703966425} a^{3} - \frac{52186973566808742091601216010148712519868609288948191}{618457406057167540373071514590359013177884981791269675} a^{2} - \frac{2180504571351635509571391722300785046942969577386243577}{6803031466628842944103786660493949144956734799703966425} a - \frac{2052993196289493196653807262133607746752550842545150333}{6803031466628842944103786660493949144956734799703966425}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 76552602113.1 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 22528 |
| The 100 conjugacy class representatives for t22n30 are not computed |
| Character table for t22n30 is not computed |
Intermediate fields
| 11.11.3670285774226257.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 1297 | Data not computed | ||||||