Normalized defining polynomial
\( x^{22} - 2 x^{21} - 39 x^{20} + 64 x^{19} + 637 x^{18} - 838 x^{17} - 5728 x^{16} + 5845 x^{15} + 31533 x^{14} - 23266 x^{13} - 111308 x^{12} + 50752 x^{11} + 255873 x^{10} - 41357 x^{9} - 384169 x^{8} - 55415 x^{7} + 364754 x^{6} + 157543 x^{5} - 189895 x^{4} - 128323 x^{3} + 35550 x^{2} + 35218 x + 3037 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(22661033510180079603495293971842498241=1297^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.88$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $1297$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{5} a^{19} + \frac{2}{5} a^{18} - \frac{2}{5} a^{17} - \frac{2}{5} a^{16} - \frac{1}{5} a^{15} + \frac{2}{5} a^{14} - \frac{2}{5} a^{13} + \frac{1}{5} a^{12} + \frac{2}{5} a^{11} - \frac{2}{5} a^{10} + \frac{1}{5} a^{9} + \frac{1}{5} a^{8} - \frac{2}{5} a^{7} - \frac{2}{5} a^{6} - \frac{1}{5} a^{5} + \frac{2}{5} a^{3} + \frac{2}{5} a^{2} + \frac{1}{5} a + \frac{2}{5}$, $\frac{1}{5} a^{20} - \frac{1}{5} a^{18} + \frac{2}{5} a^{17} - \frac{2}{5} a^{16} - \frac{1}{5} a^{15} - \frac{1}{5} a^{14} - \frac{1}{5} a^{11} - \frac{1}{5} a^{9} + \frac{1}{5} a^{8} + \frac{2}{5} a^{7} - \frac{2}{5} a^{6} + \frac{2}{5} a^{5} + \frac{2}{5} a^{4} - \frac{2}{5} a^{3} + \frac{2}{5} a^{2} + \frac{1}{5}$, $\frac{1}{1892469425483030921651227115707524371715421655} a^{21} + \frac{151509120290576039435688102920111222055874036}{1892469425483030921651227115707524371715421655} a^{20} + \frac{794019164840646940992736811672605736337017}{378493885096606184330245423141504874343084331} a^{19} - \frac{529005712511883886963542176837536744693380617}{1892469425483030921651227115707524371715421655} a^{18} + \frac{257678548996564608908745625834320928374995583}{1892469425483030921651227115707524371715421655} a^{17} - \frac{182924026051666522144785967315386456139260796}{378493885096606184330245423141504874343084331} a^{16} - \frac{2091530905359665821980378166874933796019638}{172042675043911901968293374155229488337765605} a^{15} - \frac{122957647630703785897590621861493449757675934}{1892469425483030921651227115707524371715421655} a^{14} - \frac{891619847999863328987002186539796194940702512}{1892469425483030921651227115707524371715421655} a^{13} + \frac{187395839391879142655850400188643417993343687}{378493885096606184330245423141504874343084331} a^{12} - \frac{424139269896586182390070966585913146610553369}{1892469425483030921651227115707524371715421655} a^{11} - \frac{472625858178179991626281008993636823759954278}{1892469425483030921651227115707524371715421655} a^{10} - \frac{276535018909146325085577826617176799226263299}{1892469425483030921651227115707524371715421655} a^{9} - \frac{98537515404041352159859022425639640812465431}{1892469425483030921651227115707524371715421655} a^{8} + \frac{721887057506370650839057343664497324663062028}{1892469425483030921651227115707524371715421655} a^{7} + \frac{458134924171733700063153428745327233122859293}{1892469425483030921651227115707524371715421655} a^{6} - \frac{595148579662961964493566896609053766564178062}{1892469425483030921651227115707524371715421655} a^{5} + \frac{104306107162124574707565707381874123461335014}{378493885096606184330245423141504874343084331} a^{4} + \frac{376573480601635185695615882569194129763322237}{1892469425483030921651227115707524371715421655} a^{3} + \frac{486599770020586622134524101842111393144346534}{1892469425483030921651227115707524371715421655} a^{2} - \frac{259992851589565583729549018243656156368349628}{1892469425483030921651227115707524371715421655} a - \frac{36485405567128483195761570520330891223843092}{1892469425483030921651227115707524371715421655}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 33227535087.9 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 22528 |
| The 100 conjugacy class representatives for t22n30 are not computed |
| Character table for t22n30 is not computed |
Intermediate fields
| 11.11.3670285774226257.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/13.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/47.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 1297 | Data not computed | ||||||