Normalized defining polynomial
\( x^{22} - 22 x^{20} + 198 x^{18} - 88 x^{17} - 1540 x^{16} + 660 x^{15} + 8668 x^{14} - 6248 x^{13} - 37796 x^{12} + 57096 x^{11} + 170544 x^{10} - 284240 x^{9} - 564696 x^{8} + 756096 x^{7} + 909920 x^{6} - 985072 x^{5} - 519024 x^{4} + 459536 x^{3} + 92048 x^{2} - 62656 x + 3760 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1901122355173875840973860678585777171464192=2^{30}\cdot 7^{11}\cdot 11^{23}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $83.52$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{2} a^{10}$, $\frac{1}{4} a^{11}$, $\frac{1}{4} a^{12}$, $\frac{1}{4} a^{13}$, $\frac{1}{4} a^{14}$, $\frac{1}{4} a^{15}$, $\frac{1}{8} a^{16} - \frac{1}{2} a^{5}$, $\frac{1}{8} a^{17}$, $\frac{1}{8} a^{18}$, $\frac{1}{8} a^{19}$, $\frac{1}{8} a^{20}$, $\frac{1}{573479112873329221442084551575092280277216334997704} a^{21} - \frac{3753987776978181335585286817901297423003463455350}{71684889109166152680260568946886535034652041874713} a^{20} + \frac{6861483173355216324495462845624363530665143703059}{573479112873329221442084551575092280277216334997704} a^{19} - \frac{1901914852529131596939986401055936527711846976547}{286739556436664610721042275787546140138608167498852} a^{18} + \frac{2745043348985002701928716799813942109150630240227}{286739556436664610721042275787546140138608167498852} a^{17} + \frac{10513565259503018731681639030551600187464882864473}{573479112873329221442084551575092280277216334997704} a^{16} - \frac{3580388341235325734249199678766528802554088914035}{143369778218332305360521137893773070069304083749426} a^{15} - \frac{6200454635462619460523453943674507213508137993718}{71684889109166152680260568946886535034652041874713} a^{14} - \frac{9255733624135178385471516583383562795374241089255}{143369778218332305360521137893773070069304083749426} a^{13} - \frac{14200437953296694897850915104621800811114785985075}{143369778218332305360521137893773070069304083749426} a^{12} - \frac{32425675616297236117166912114826289220012486667455}{286739556436664610721042275787546140138608167498852} a^{11} + \frac{15274011399785332000787352960086744045314948098364}{71684889109166152680260568946886535034652041874713} a^{10} + \frac{3649652916056923585077510314261608406670495564281}{71684889109166152680260568946886535034652041874713} a^{9} + \frac{19207343855172255378803401475986675554150901579539}{143369778218332305360521137893773070069304083749426} a^{8} - \frac{8871455178276649061838805340036746505129255169550}{71684889109166152680260568946886535034652041874713} a^{7} - \frac{3161546165724804853673980079700731847210493563313}{71684889109166152680260568946886535034652041874713} a^{6} + \frac{54099493964676523450364672255171589056486825905821}{143369778218332305360521137893773070069304083749426} a^{5} - \frac{12151386146990318715740841604049649050600208708361}{71684889109166152680260568946886535034652041874713} a^{4} - \frac{22030301881257231466972875130254065688973846405757}{71684889109166152680260568946886535034652041874713} a^{3} + \frac{24531717987222150566745778267985678485682615464314}{71684889109166152680260568946886535034652041874713} a^{2} - \frac{4043351028663832272577082607346340269446756567878}{71684889109166152680260568946886535034652041874713} a - \frac{15543940548267232639003147751566695543422379191373}{71684889109166152680260568946886535034652041874713}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 47337290422000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 112640 |
| The 44 conjugacy class representatives for t22n35 |
| Character table for t22n35 is not computed |
Intermediate fields
| 11.11.4910318845910094848.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | $20{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | $20{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{7}$ | $20{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $7$ | 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.10.5.1 | $x^{10} - 98 x^{6} + 2401 x^{2} - 268912$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 7.10.5.1 | $x^{10} - 98 x^{6} + 2401 x^{2} - 268912$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 11 | Data not computed | ||||||