Normalized defining polynomial
\( x^{22} - x^{21} - 17 x^{20} + 165 x^{19} - 465 x^{18} - 2217 x^{17} + 13152 x^{16} - 18246 x^{15} - 88965 x^{14} + 460975 x^{13} + 80417 x^{12} - 3206822 x^{11} + 1243761 x^{10} + 11369550 x^{9} - 5283585 x^{8} - 23052156 x^{7} + 8795046 x^{6} + 26559657 x^{5} - 6629445 x^{4} - 15684075 x^{3} + 2137059 x^{2} + 3574746 x - 256383 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1848815246537641483557884967899322509765625=3^{20}\cdot 5^{20}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $83.41$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{9} + \frac{1}{3} a^{6}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{10} + \frac{1}{3} a^{7}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{11} + \frac{1}{3} a^{8}$, $\frac{1}{15} a^{15} + \frac{2}{15} a^{14} - \frac{2}{15} a^{13} + \frac{2}{15} a^{12} - \frac{2}{15} a^{11} - \frac{1}{15} a^{10} + \frac{7}{15} a^{9} - \frac{7}{15} a^{8} + \frac{7}{15} a^{7} + \frac{1}{5} a^{6} - \frac{1}{5} a^{5} + \frac{1}{5} a^{4} - \frac{1}{5} a^{3} + \frac{1}{5} a^{2} - \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{30} a^{16} + \frac{2}{15} a^{14} - \frac{2}{15} a^{13} - \frac{1}{30} a^{12} - \frac{7}{30} a^{11} - \frac{11}{30} a^{10} - \frac{11}{30} a^{9} - \frac{7}{15} a^{8} - \frac{1}{5} a^{7} - \frac{2}{15} a^{6} - \frac{1}{5} a^{5} - \frac{3}{10} a^{4} - \frac{1}{5} a^{3} + \frac{1}{5} a^{2} + \frac{1}{10} a - \frac{3}{10}$, $\frac{1}{30} a^{17} - \frac{1}{15} a^{14} - \frac{1}{10} a^{13} - \frac{1}{6} a^{12} - \frac{13}{30} a^{11} + \frac{1}{10} a^{10} + \frac{4}{15} a^{9} + \frac{1}{15} a^{8} - \frac{2}{5} a^{7} - \frac{4}{15} a^{6} + \frac{1}{10} a^{5} + \frac{2}{5} a^{4} - \frac{2}{5} a^{3} - \frac{3}{10} a^{2} + \frac{1}{10} a + \frac{2}{5}$, $\frac{1}{30} a^{18} + \frac{1}{30} a^{14} + \frac{1}{30} a^{13} + \frac{1}{30} a^{12} - \frac{1}{30} a^{11} - \frac{2}{15} a^{10} + \frac{1}{5} a^{9} + \frac{2}{15} a^{8} - \frac{7}{15} a^{7} - \frac{11}{30} a^{6} + \frac{1}{5} a^{5} - \frac{1}{5} a^{4} - \frac{1}{2} a^{3} + \frac{3}{10} a^{2} + \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{150} a^{19} + \frac{1}{150} a^{18} + \frac{1}{75} a^{17} + \frac{1}{50} a^{15} - \frac{4}{75} a^{14} + \frac{1}{75} a^{13} + \frac{4}{25} a^{12} + \frac{1}{30} a^{11} - \frac{32}{75} a^{10} + \frac{1}{15} a^{9} + \frac{2}{5} a^{8} - \frac{1}{6} a^{7} - \frac{1}{10} a^{6} + \frac{13}{50} a^{4} - \frac{6}{25} a^{3} - \frac{9}{50} a^{2} + \frac{2}{5} a + \frac{2}{25}$, $\frac{1}{150} a^{20} + \frac{1}{150} a^{18} - \frac{1}{75} a^{17} - \frac{1}{75} a^{16} - \frac{1}{150} a^{15} + \frac{1}{15} a^{14} + \frac{11}{75} a^{13} + \frac{1}{25} a^{12} - \frac{9}{25} a^{11} - \frac{31}{150} a^{10} + \frac{1}{6} a^{9} + \frac{13}{30} a^{8} - \frac{4}{15} a^{7} + \frac{13}{30} a^{6} + \frac{13}{50} a^{5} + \frac{3}{50} a^{3} - \frac{21}{50} a^{2} + \frac{19}{50} a + \frac{1}{50}$, $\frac{1}{198775191502826645404579466833736209817243952659131808679739050} a^{21} + \frac{82445962654405276684364948915140706460470391682865183014261}{99387595751413322702289733416868104908621976329565904339869525} a^{20} + \frac{42602030218554839206245630477508603234394802358519173637241}{33129198583804440900763244472289368302873992109855301446623175} a^{19} + \frac{11426957372384300897770793780892209182093709716140274599383}{19877519150282664540457946683373620981724395265913180867973905} a^{18} - \frac{213334572849412151902798076681754718758199630001166834129666}{33129198583804440900763244472289368302873992109855301446623175} a^{17} + \frac{260379618823947913368318425300705515743788782299748591060084}{19877519150282664540457946683373620981724395265913180867973905} a^{16} - \frac{1878788233457727979524902776013570706130505182033446085069969}{66258397167608881801526488944578736605747984219710602893246350} a^{15} + \frac{956395957865926053773422602883967162561447162743646682907957}{198775191502826645404579466833736209817243952659131808679739050} a^{14} - \frac{1905043430891689746913778399034050849110432802049665785677641}{13251679433521776360305297788915747321149596843942120578649270} a^{13} - \frac{1612172694215228202002198704889119511109812047909054070122111}{99387595751413322702289733416868104908621976329565904339869525} a^{12} - \frac{16670262047645424867650522960265869993405350590617927247015487}{99387595751413322702289733416868104908621976329565904339869525} a^{11} - \frac{14360578963312241008241781419809131637567901364983353688005312}{33129198583804440900763244472289368302873992109855301446623175} a^{10} + \frac{7662428335974608353813557260183881063536074107107386301832169}{19877519150282664540457946683373620981724395265913180867973905} a^{9} - \frac{7452516357421932117776440942538714997294707417764721401399031}{19877519150282664540457946683373620981724395265913180867973905} a^{8} - \frac{97800715925571626008901571118398278235033779277289837765139}{19877519150282664540457946683373620981724395265913180867973905} a^{7} - \frac{1968076143181382874054621509623540474294697843595602507078527}{66258397167608881801526488944578736605747984219710602893246350} a^{6} - \frac{12220013277169481190132453791916292393942155797462183140748407}{33129198583804440900763244472289368302873992109855301446623175} a^{5} + \frac{12260737471937748343072481301413471960399977631616727519058313}{66258397167608881801526488944578736605747984219710602893246350} a^{4} - \frac{110487231897788302478334139136992989198297841628992867692058}{1325167943352177636030529778891574732114959684394212057864927} a^{3} + \frac{19049406314620651764871969663363664842201952423043413850301707}{66258397167608881801526488944578736605747984219710602893246350} a^{2} - \frac{8570558466519637075323064763744526562982266517479216919736288}{33129198583804440900763244472289368302873992109855301446623175} a - \frac{12551068502447403571373018494808518780368832331976003012467763}{66258397167608881801526488944578736605747984219710602893246350}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 399841961007000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 56320 |
| The 40 conjugacy class representatives for t22n33 |
| Character table for t22n33 is not computed |
Intermediate fields
| 11.11.123610132462587890625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{2}$ | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.11.10.1 | $x^{11} - 3$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ |
| 3.11.10.1 | $x^{11} - 3$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ | |
| $5$ | 5.11.10.1 | $x^{11} - 5$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ |
| 5.11.10.1 | $x^{11} - 5$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ | |
| $11$ | 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |