Normalized defining polynomial
\( x^{22} - x^{21} - 26 x^{20} + 49 x^{19} + 237 x^{18} - 701 x^{17} - 634 x^{16} + 4156 x^{15} - 2565 x^{14} - 9376 x^{13} + 16978 x^{12} - 1217 x^{11} - 24957 x^{10} + 25854 x^{9} + 3793 x^{8} - 25081 x^{7} + 13524 x^{6} + 5616 x^{5} - 7257 x^{4} + 961 x^{3} + 908 x^{2} - 278 x + 11 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(17471883970840462300304775614373553=1297^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $36.01$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $1297$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{11479883706758612687119} a^{21} + \frac{5646924614710842772974}{11479883706758612687119} a^{20} - \frac{5425382954382728038865}{11479883706758612687119} a^{19} + \frac{799831102165524500805}{11479883706758612687119} a^{18} + \frac{3853737031061616745204}{11479883706758612687119} a^{17} - \frac{3993656118310563388591}{11479883706758612687119} a^{16} + \frac{5254554258715539547316}{11479883706758612687119} a^{15} - \frac{4189551846322549323314}{11479883706758612687119} a^{14} + \frac{5215761337193915486008}{11479883706758612687119} a^{13} - \frac{1437939033697614470745}{11479883706758612687119} a^{12} - \frac{3455306779136893671815}{11479883706758612687119} a^{11} - \frac{6974887119300062491}{310267127209692234787} a^{10} + \frac{788211005929298991274}{11479883706758612687119} a^{9} + \frac{2221534571332491317995}{11479883706758612687119} a^{8} + \frac{2553335840138732776385}{11479883706758612687119} a^{7} - \frac{4057305598360697324692}{11479883706758612687119} a^{6} - \frac{5173815403937271205834}{11479883706758612687119} a^{5} + \frac{1651012584499977324218}{11479883706758612687119} a^{4} + \frac{1745497118431336986072}{11479883706758612687119} a^{3} + \frac{1753125242469212302644}{11479883706758612687119} a^{2} - \frac{4960067866211365884647}{11479883706758612687119} a - \frac{2864016636046558589031}{11479883706758612687119}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3382573146.33 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 22528 |
| The 100 conjugacy class representatives for t22n29 are not computed |
| Character table for t22n29 is not computed |
Intermediate fields
| 11.11.3670285774226257.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{5}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 1297 | Data not computed | ||||||