Normalized defining polynomial
\( x^{22} - x^{21} - 14 x^{20} + 62 x^{18} + 129 x^{17} - 52 x^{16} - 983 x^{15} + 160 x^{14} + 2384 x^{13} - 603 x^{12} - 2192 x^{11} - 1350 x^{10} + 4200 x^{9} + 91 x^{8} - 3234 x^{7} + 1064 x^{6} + 775 x^{5} - 416 x^{4} - 33 x^{3} + 39 x^{2} - x - 1 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(17471883970840462300304775614373553=1297^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $36.01$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $1297$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{5} a^{16} - \frac{2}{5} a^{15} + \frac{2}{5} a^{14} + \frac{1}{5} a^{13} + \frac{2}{5} a^{11} - \frac{2}{5} a^{10} - \frac{1}{5} a^{9} + \frac{1}{5} a^{6} - \frac{1}{5} a^{4} + \frac{1}{5} a^{3} - \frac{1}{5} a^{2} - \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{17} - \frac{2}{5} a^{15} + \frac{2}{5} a^{13} + \frac{2}{5} a^{12} + \frac{2}{5} a^{11} - \frac{2}{5} a^{9} + \frac{1}{5} a^{7} + \frac{2}{5} a^{6} - \frac{1}{5} a^{5} - \frac{1}{5} a^{4} + \frac{1}{5} a^{3} + \frac{1}{5} a^{2} + \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{5} a^{18} + \frac{1}{5} a^{15} + \frac{1}{5} a^{14} - \frac{1}{5} a^{13} + \frac{2}{5} a^{12} - \frac{1}{5} a^{11} - \frac{1}{5} a^{10} - \frac{2}{5} a^{9} + \frac{1}{5} a^{8} + \frac{2}{5} a^{7} + \frac{1}{5} a^{6} - \frac{1}{5} a^{5} - \frac{1}{5} a^{4} - \frac{2}{5} a^{3} - \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{5} a^{19} - \frac{2}{5} a^{15} + \frac{2}{5} a^{14} + \frac{1}{5} a^{13} - \frac{1}{5} a^{12} + \frac{2}{5} a^{11} + \frac{2}{5} a^{9} + \frac{2}{5} a^{8} + \frac{1}{5} a^{7} - \frac{2}{5} a^{6} - \frac{1}{5} a^{5} - \frac{1}{5} a^{4} - \frac{1}{5} a^{3} - \frac{1}{5} a^{2} - \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{185} a^{20} + \frac{12}{185} a^{19} + \frac{17}{185} a^{18} + \frac{16}{185} a^{17} - \frac{1}{37} a^{16} - \frac{86}{185} a^{15} - \frac{64}{185} a^{14} + \frac{18}{185} a^{13} - \frac{79}{185} a^{12} - \frac{42}{185} a^{11} + \frac{31}{185} a^{10} - \frac{17}{185} a^{9} + \frac{67}{185} a^{8} + \frac{11}{37} a^{7} + \frac{16}{185} a^{6} + \frac{89}{185} a^{5} - \frac{38}{185} a^{4} + \frac{71}{185} a^{3} - \frac{34}{185} a^{2} + \frac{11}{185} a + \frac{66}{185}$, $\frac{1}{5577637809435206365} a^{21} - \frac{462780218798102}{1115527561887041273} a^{20} - \frac{106806782315606917}{5577637809435206365} a^{19} + \frac{240921164515454936}{5577637809435206365} a^{18} - \frac{504141486688436521}{5577637809435206365} a^{17} + \frac{58901652145722256}{5577637809435206365} a^{16} + \frac{1580095169959019811}{5577637809435206365} a^{15} + \frac{1012206640989294524}{5577637809435206365} a^{14} - \frac{219969734129243951}{1115527561887041273} a^{13} + \frac{2343156138708949186}{5577637809435206365} a^{12} + \frac{565344825925036637}{5577637809435206365} a^{11} + \frac{46502444779146224}{150746967822573145} a^{10} + \frac{913495030799453749}{5577637809435206365} a^{9} + \frac{439291045772011730}{1115527561887041273} a^{8} - \frac{517704944244092133}{1115527561887041273} a^{7} + \frac{25555900952019350}{1115527561887041273} a^{6} + \frac{997826485566727814}{5577637809435206365} a^{5} + \frac{226114457349567523}{1115527561887041273} a^{4} + \frac{2769765949406239119}{5577637809435206365} a^{3} + \frac{1523624440542907388}{5577637809435206365} a^{2} - \frac{219609725638995436}{5577637809435206365} a + \frac{63339788541510060}{1115527561887041273}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1793681479.85 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 22528 |
| The 100 conjugacy class representatives for t22n29 are not computed |
| Character table for t22n29 is not computed |
Intermediate fields
| 11.11.3670285774226257.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/13.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/47.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{7}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 1297 | Data not computed | ||||||