Normalized defining polynomial
\( x^{22} - 21 x^{20} - 450 x^{18} + 8055 x^{16} + 16740 x^{14} - 655047 x^{12} + 2337012 x^{10} + 2067120 x^{8} - 15770700 x^{6} + 4664385 x^{4} + 15107796 x^{2} - 392931 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(172107892041322261742115837011718750000000000=2^{10}\cdot 3^{20}\cdot 5^{20}\cdot 11^{17}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $102.50$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{3} a^{4}$, $\frac{1}{3} a^{5}$, $\frac{1}{3} a^{6}$, $\frac{1}{3} a^{7}$, $\frac{1}{9} a^{8}$, $\frac{1}{9} a^{9}$, $\frac{1}{9} a^{10}$, $\frac{1}{27} a^{11}$, $\frac{1}{27} a^{12}$, $\frac{1}{27} a^{13}$, $\frac{1}{27} a^{14}$, $\frac{1}{81} a^{15}$, $\frac{1}{162} a^{16} - \frac{1}{54} a^{13} - \frac{1}{54} a^{11} - \frac{1}{18} a^{10} - \frac{1}{18} a^{9} - \frac{1}{6} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{162} a^{17} - \frac{1}{54} a^{14} - \frac{1}{54} a^{12} - \frac{1}{54} a^{11} - \frac{1}{18} a^{10} - \frac{1}{18} a^{8} - \frac{1}{6} a^{4} - \frac{1}{2} a$, $\frac{1}{162} a^{18} - \frac{1}{162} a^{15} - \frac{1}{54} a^{13} - \frac{1}{54} a^{12} - \frac{1}{54} a^{11} - \frac{1}{18} a^{9} - \frac{1}{6} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{486} a^{19} - \frac{1}{54} a^{14} - \frac{1}{54} a^{12} - \frac{1}{54} a^{11} - \frac{1}{18} a^{9} - \frac{1}{6} a^{7} - \frac{1}{6} a^{6} - \frac{1}{2}$, $\frac{1}{112652471497504280273268394967226} a^{20} - \frac{6834959720893381829880221689}{6258470638750237792959355275957} a^{18} + \frac{35732192877531473017905937237}{18775411916250713378878065827871} a^{16} - \frac{1}{162} a^{15} - \frac{52041968427059355208086823756}{6258470638750237792959355275957} a^{14} - \frac{1}{54} a^{13} + \frac{65357685477345203128675146035}{12516941277500475585918710551914} a^{12} + \frac{5507166862349670104613132771}{463590417685202799478470761182} a^{10} - \frac{185707926056610780871553427797}{4172313759166825195306236850638} a^{8} - \frac{1}{6} a^{7} - \frac{1709950445315183139946250702}{231795208842601399739235380591} a^{6} - \frac{38417961735775317457841723582}{695385626527804199217706141773} a^{4} - \frac{89295080237048400684843572129}{231795208842601399739235380591} a^{2} - \frac{1}{2} a - \frac{103526029569345904766796875930}{231795208842601399739235380591}$, $\frac{1}{788567300482529961912878764770582} a^{21} - \frac{50689211974097467525297052999}{112652471497504280273268394967226} a^{19} - \frac{17814535898615383744824834013}{29206196314167776367143657954466} a^{17} - \frac{387921114123779465363495851859}{131427883413754993652146460795097} a^{15} - \frac{1}{54} a^{14} - \frac{315013970525229498044515497869}{43809294471251664550715486931699} a^{13} + \frac{190244357063021246281894982704}{43809294471251664550715486931699} a^{11} - \frac{216432781247271193450008062993}{9735398771389258789047885984822} a^{9} + \frac{458460566349257250058632009076}{4867699385694629394523942992411} a^{7} - \frac{1}{6} a^{6} - \frac{38417961735775317457841723582}{4867699385694629394523942992411} a^{5} - \frac{1}{6} a^{4} + \frac{516795466053707397848018997515}{3245132923796419596349295328274} a^{3} - \frac{1}{2} a^{2} - \frac{1366028103351698808229770654815}{3245132923796419596349295328274} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2571134739320000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 112640 |
| The 80 conjugacy class representatives for t22n36 are not computed |
| Character table for t22n36 is not computed |
Intermediate fields
| 11.11.123610132462587890625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | $22$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.10.10.12 | $x^{10} - 11 x^{8} + 54 x^{6} - 10 x^{4} + 9 x^{2} - 11$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2, 2]^{5}$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.11.10.1 | $x^{11} - 5$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ |
| 5.11.10.1 | $x^{11} - 5$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ | |
| $11$ | $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 11.10.9.7 | $x^{10} + 2673$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |