Properties

Label 22.14.1655558231...7392.3
Degree $22$
Signature $[14, 4]$
Discriminant $2^{22}\cdot 23^{21}$
Root discriminant $39.89$
Ramified primes $2, 23$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 22T28

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-23, 0, 368, 0, -1633, 0, 2070, 0, 759, 0, -2093, 0, 115, 0, 552, 0, -23, 0, -46, 0, 0, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^22 - 46*x^18 - 23*x^16 + 552*x^14 + 115*x^12 - 2093*x^10 + 759*x^8 + 2070*x^6 - 1633*x^4 + 368*x^2 - 23)
 
gp: K = bnfinit(x^22 - 46*x^18 - 23*x^16 + 552*x^14 + 115*x^12 - 2093*x^10 + 759*x^8 + 2070*x^6 - 1633*x^4 + 368*x^2 - 23, 1)
 

Normalized defining polynomial

\( x^{22} - 46 x^{18} - 23 x^{16} + 552 x^{14} + 115 x^{12} - 2093 x^{10} + 759 x^{8} + 2070 x^{6} - 1633 x^{4} + 368 x^{2} - 23 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $22$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[14, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(165555823163769559238834502754107392=2^{22}\cdot 23^{21}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $39.89$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 23$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{171630253286683} a^{20} - \frac{27493197942412}{171630253286683} a^{18} - \frac{21140119999212}{171630253286683} a^{16} - \frac{24351665339438}{171630253286683} a^{14} + \frac{7462294888023}{171630253286683} a^{12} - \frac{68657586990165}{171630253286683} a^{10} - \frac{40110706978644}{171630253286683} a^{8} - \frac{84775537056008}{171630253286683} a^{6} + \frac{69150783700906}{171630253286683} a^{4} - \frac{53526146431155}{171630253286683} a^{2} - \frac{12304267799998}{171630253286683}$, $\frac{1}{171630253286683} a^{21} - \frac{27493197942412}{171630253286683} a^{19} - \frac{21140119999212}{171630253286683} a^{17} - \frac{24351665339438}{171630253286683} a^{15} + \frac{7462294888023}{171630253286683} a^{13} - \frac{68657586990165}{171630253286683} a^{11} - \frac{40110706978644}{171630253286683} a^{9} - \frac{84775537056008}{171630253286683} a^{7} + \frac{69150783700906}{171630253286683} a^{5} - \frac{53526146431155}{171630253286683} a^{3} - \frac{12304267799998}{171630253286683} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $17$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 4812745162.38 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

22T28:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 22528
The 208 conjugacy class representatives for t22n28 are not computed
Character table for t22n28 is not computed

Intermediate fields

\(\Q(\zeta_{23})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 22 siblings: data not computed
Degree 44 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R $22$ $22$ ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/13.11.0.1}{11} }^{2}$ $22$ ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ R ${\href{/LocalNumberField/29.11.0.1}{11} }^{2}$ $22$ $22$ ${\href{/LocalNumberField/41.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{8}$ $22$ $22$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
23Data not computed