Normalized defining polynomial
\( x^{22} - 24 x^{20} + 90 x^{18} + 1170 x^{16} - 4725 x^{14} - 26028 x^{12} + 42282 x^{10} + 208170 x^{8} + 12150 x^{6} - 201690 x^{4} + 94041 x^{2} - 11664 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(15646172003756569249283257910156250000000000=2^{10}\cdot 3^{20}\cdot 5^{20}\cdot 11^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $91.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{3} a^{4}$, $\frac{1}{3} a^{5}$, $\frac{1}{3} a^{6}$, $\frac{1}{3} a^{7}$, $\frac{1}{9} a^{8}$, $\frac{1}{9} a^{9}$, $\frac{1}{9} a^{10}$, $\frac{1}{54} a^{11} - \frac{1}{6} a^{7} - \frac{1}{2} a$, $\frac{1}{54} a^{12} - \frac{1}{18} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{54} a^{13} - \frac{1}{18} a^{9} - \frac{1}{2} a^{3}$, $\frac{1}{54} a^{14} - \frac{1}{18} a^{10} - \frac{1}{6} a^{4}$, $\frac{1}{162} a^{15} - \frac{1}{6} a^{7} - \frac{1}{6} a^{5} - \frac{1}{2} a$, $\frac{1}{324} a^{16} - \frac{1}{108} a^{14} - \frac{1}{108} a^{12} - \frac{1}{108} a^{11} + \frac{1}{36} a^{10} - \frac{1}{18} a^{9} - \frac{1}{18} a^{8} - \frac{1}{12} a^{7} - \frac{1}{12} a^{6} - \frac{1}{6} a^{5} - \frac{1}{12} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a$, $\frac{1}{324} a^{17} - \frac{1}{324} a^{15} - \frac{1}{108} a^{13} - \frac{1}{108} a^{12} - \frac{1}{108} a^{11} - \frac{1}{18} a^{10} - \frac{1}{18} a^{9} + \frac{1}{36} a^{8} + \frac{1}{12} a^{7} - \frac{1}{6} a^{6} + \frac{1}{12} a^{5} - \frac{1}{6} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{324} a^{18} - \frac{1}{108} a^{13} - \frac{1}{108} a^{11} + \frac{1}{36} a^{10} - \frac{1}{36} a^{9} - \frac{1}{36} a^{8} - \frac{1}{12} a^{7} - \frac{1}{12} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a$, $\frac{1}{972} a^{19} - \frac{1}{108} a^{14} - \frac{1}{108} a^{12} - \frac{1}{108} a^{11} - \frac{1}{36} a^{10} + \frac{1}{36} a^{9} + \frac{1}{36} a^{8} - \frac{1}{6} a^{7} + \frac{1}{12} a^{5} - \frac{1}{12} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{53110111676508} a^{20} - \frac{5620417835}{8851685279418} a^{18} + \frac{1619884724}{4425842639709} a^{16} - \frac{1}{324} a^{15} + \frac{11696058331}{1475280879903} a^{14} - \frac{1}{108} a^{13} + \frac{16694488849}{1967041173204} a^{12} - \frac{1}{108} a^{11} - \frac{11954261531}{655680391068} a^{10} + \frac{1}{36} a^{9} + \frac{18266650979}{491760293301} a^{8} - \frac{81614601223}{655680391068} a^{6} + \frac{1}{12} a^{5} - \frac{7737621419}{163920097767} a^{4} + \frac{1}{4} a^{3} - \frac{45222759389}{109280065178} a^{2} - \frac{16494786616}{54640032589}$, $\frac{1}{106220223353016} a^{21} - \frac{5620417835}{17703370558836} a^{19} + \frac{809942362}{4425842639709} a^{17} - \frac{9775928798}{4425842639709} a^{15} - \frac{1}{108} a^{14} - \frac{59196598631}{11802247039224} a^{13} + \frac{4694311999}{983520586602} a^{11} - \frac{1}{36} a^{10} - \frac{18186690805}{491760293301} a^{9} - \frac{34063658453}{327840195534} a^{7} - \frac{70115275427}{655680391068} a^{5} + \frac{1}{12} a^{4} + \frac{64057305789}{218560130356} a^{3} - \frac{1}{2} a^{2} + \frac{97940951303}{437120260712} a - \frac{1}{2}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2142783344110000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 56320 |
| The 40 conjugacy class representatives for t22n33 |
| Character table for t22n33 is not computed |
Intermediate fields
| 11.11.123610132462587890625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.10.10.5 | $x^{10} - 9 x^{8} + 50 x^{6} - 50 x^{4} + 45 x^{2} - 5$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2]^{10}$ | |
| 2.10.0.1 | $x^{10} - x^{3} + 1$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| $3$ | 3.11.10.1 | $x^{11} - 3$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ |
| 3.11.10.1 | $x^{11} - 3$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ | |
| $5$ | 5.11.10.1 | $x^{11} - 5$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ |
| 5.11.10.1 | $x^{11} - 5$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ | |
| $11$ | $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |