Normalized defining polynomial
\( x^{22} - 33 x^{20} + 143 x^{18} - 22 x^{17} + 385 x^{16} - 2222 x^{15} - 902 x^{14} + 14586 x^{13} - 3234 x^{12} + 94 x^{11} - 39512 x^{10} - 28006 x^{9} + 136862 x^{8} - 99286 x^{7} - 30151 x^{6} + 136136 x^{5} - 99561 x^{4} - 13794 x^{3} + 44385 x^{2} - 17182 x + 2039 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1543118794783990130660601200150793158656=2^{26}\cdot 7^{10}\cdot 11^{22}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $60.44$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{11} a^{17} + \frac{5}{11} a^{16} + \frac{4}{11} a^{15} + \frac{2}{11} a^{14} + \frac{4}{11} a^{13} + \frac{5}{11} a^{12} + \frac{1}{11} a^{11} - \frac{4}{11} a^{6} + \frac{2}{11} a^{5} - \frac{5}{11} a^{4} + \frac{3}{11} a^{3} - \frac{5}{11} a^{2} + \frac{2}{11} a - \frac{4}{11}$, $\frac{1}{11} a^{18} + \frac{1}{11} a^{16} + \frac{4}{11} a^{15} + \frac{5}{11} a^{14} - \frac{4}{11} a^{13} - \frac{2}{11} a^{12} - \frac{5}{11} a^{11} - \frac{4}{11} a^{7} - \frac{4}{11} a^{5} - \frac{5}{11} a^{4} + \frac{2}{11} a^{3} + \frac{5}{11} a^{2} - \frac{3}{11} a - \frac{2}{11}$, $\frac{1}{11} a^{19} - \frac{1}{11} a^{16} + \frac{1}{11} a^{15} + \frac{5}{11} a^{14} + \frac{5}{11} a^{13} + \frac{1}{11} a^{12} - \frac{1}{11} a^{11} - \frac{4}{11} a^{8} + \frac{4}{11} a^{5} - \frac{4}{11} a^{4} + \frac{2}{11} a^{3} + \frac{2}{11} a^{2} - \frac{4}{11} a + \frac{4}{11}$, $\frac{1}{11} a^{20} - \frac{5}{11} a^{16} - \frac{2}{11} a^{15} - \frac{4}{11} a^{14} + \frac{5}{11} a^{13} + \frac{4}{11} a^{12} + \frac{1}{11} a^{11} - \frac{4}{11} a^{9} - \frac{2}{11} a^{5} - \frac{3}{11} a^{4} + \frac{5}{11} a^{3} + \frac{2}{11} a^{2} - \frac{5}{11} a - \frac{4}{11}$, $\frac{1}{2652399814143841015302538830438928360382406382244435051} a^{21} - \frac{7008202141157682547553680532807186411858499773933859}{241127255831258274118412620948993487307491489294948641} a^{20} - \frac{36677698754548391896134041322430448454175192739723790}{2652399814143841015302538830438928360382406382244435051} a^{19} - \frac{52990231661267229047979952098125528111292433540669806}{2652399814143841015302538830438928360382406382244435051} a^{18} - \frac{2546498175787674159175610578008677027053196590512627}{241127255831258274118412620948993487307491489294948641} a^{17} - \frac{956027920510439704028281913189044747958002821890125608}{2652399814143841015302538830438928360382406382244435051} a^{16} - \frac{530801347380178313152461364553122022046803747660837442}{2652399814143841015302538830438928360382406382244435051} a^{15} + \frac{667186553187899473552509191255753899224804014458418563}{2652399814143841015302538830438928360382406382244435051} a^{14} + \frac{38682837911602757551411581773169082377854960689885484}{241127255831258274118412620948993487307491489294948641} a^{13} - \frac{884460474843108650194636307923541028448437576353312554}{2652399814143841015302538830438928360382406382244435051} a^{12} + \frac{433541004670690415306725017167276444677812926977007007}{2652399814143841015302538830438928360382406382244435051} a^{11} - \frac{827985958924247479139317792981349464850384202810968575}{2652399814143841015302538830438928360382406382244435051} a^{10} - \frac{53117759713706195935883995547695855964251610253414499}{241127255831258274118412620948993487307491489294948641} a^{9} + \frac{739059501874007857414009265752434058063173476443658836}{2652399814143841015302538830438928360382406382244435051} a^{8} + \frac{1005340715074914836920263555486132464862853729772359135}{2652399814143841015302538830438928360382406382244435051} a^{7} + \frac{63097721615398224633680821094280996769550676995029054}{241127255831258274118412620948993487307491489294948641} a^{6} + \frac{1062284188838145297657135901715012901629018231901329570}{2652399814143841015302538830438928360382406382244435051} a^{5} - \frac{1137057928660572356171645297177293215487874763116465073}{2652399814143841015302538830438928360382406382244435051} a^{4} + \frac{227556836669491524880514063211394206125234771930237830}{2652399814143841015302538830438928360382406382244435051} a^{3} + \frac{114880780405186890645400174454960291573838427697044064}{241127255831258274118412620948993487307491489294948641} a^{2} - \frac{917536423559853711741684800491602217357336216493603933}{2652399814143841015302538830438928360382406382244435051} a + \frac{154276205718703995296139490927146725224392939981163971}{2652399814143841015302538830438928360382406382244435051}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4502089440930 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 112640 |
| The 44 conjugacy class representatives for t22n34 |
| Character table for t22n34 is not computed |
Intermediate fields
| 11.11.4910318845910094848.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | $20{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 7.10.5.1 | $x^{10} - 98 x^{6} + 2401 x^{2} - 268912$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 7.10.5.1 | $x^{10} - 98 x^{6} + 2401 x^{2} - 268912$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $11$ | 11.11.11.6 | $x^{11} + 11 x + 11$ | $11$ | $1$ | $11$ | $F_{11}$ | $[11/10]_{10}$ |
| 11.11.11.6 | $x^{11} + 11 x + 11$ | $11$ | $1$ | $11$ | $F_{11}$ | $[11/10]_{10}$ | |