Normalized defining polynomial
\( x^{22} - 74 x^{20} + 2449 x^{18} - 47772 x^{16} + 608919 x^{14} - 5307720 x^{12} + 32127975 x^{10} - 134044248 x^{8} + 373194336 x^{6} - 645946216 x^{4} + 597000440 x^{2} - 195030400 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(12690240639024486099207064421849753745845788293805139479005039009036081561600=2^{45}\cdot 3^{28}\cdot 5^{2}\cdot 7^{4}\cdot 23^{4}\cdot 59\cdot 137^{16}\cdot 1033\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $2879.05$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7, 23, 59, 137, 1033$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5}$, $\frac{1}{12} a^{18} - \frac{1}{4} a^{14} - \frac{1}{2} a^{12} + \frac{1}{4} a^{10} - \frac{1}{2} a^{8} + \frac{1}{4} a^{6} - \frac{1}{2} a^{4} - \frac{1}{3}$, $\frac{1}{12} a^{19} - \frac{1}{4} a^{15} - \frac{1}{2} a^{13} + \frac{1}{4} a^{11} - \frac{1}{2} a^{9} + \frac{1}{4} a^{7} - \frac{1}{2} a^{5} - \frac{1}{3} a$, $\frac{1}{27000} a^{20} - \frac{527}{13500} a^{18} - \frac{153}{1000} a^{16} + \frac{64}{375} a^{14} - \frac{1807}{9000} a^{12} + \frac{9}{50} a^{10} + \frac{1}{40} a^{8} - \frac{229}{2250} a^{6} + \frac{191}{750} a^{4} + \frac{1663}{3375} a^{2} + \frac{163}{675}$, $\frac{1}{216000} a^{21} - \frac{1}{54000} a^{20} + \frac{1723}{108000} a^{19} + \frac{527}{27000} a^{18} + \frac{1347}{8000} a^{17} - \frac{347}{2000} a^{16} - \frac{247}{6000} a^{15} - \frac{32}{375} a^{14} - \frac{6307}{72000} a^{13} + \frac{6307}{18000} a^{12} - \frac{83}{200} a^{11} - \frac{9}{100} a^{10} - \frac{19}{320} a^{9} + \frac{19}{80} a^{8} - \frac{677}{9000} a^{7} - \frac{2021}{4500} a^{6} - \frac{23}{750} a^{5} + \frac{46}{375} a^{4} + \frac{1663}{27000} a^{3} - \frac{1663}{6750} a^{2} - \frac{1637}{5400} a - \frac{163}{1350}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 171825983862000000000000000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 40874803200 |
| The 400 conjugacy class representatives for t22n52 are not computed |
| Character table for t22n52 is not computed |
Intermediate fields
| 11.7.63019333158425674204677255696384.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 44 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ | $18{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | $18{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{3}$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.8.21.1 | $x^{8} + 2 x^{6} + 4 x^{2} + 2$ | $8$ | $1$ | $21$ | $C_2 \wr C_2\wr C_2$ | $[2, 2, 3, 7/2, 7/2, 15/4]^{2}$ | |
| 2.12.24.424 | $x^{12} + 2 x^{10} + 4 x^{7} - 2 x^{6} + 4 x^{4} + 4 x^{3} - 2 x^{2} + 4 x + 2$ | $12$ | $1$ | $24$ | 12T149 | $[4/3, 4/3, 2, 7/3, 7/3, 3]_{3}^{2}$ | |
| $3$ | 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.9.13.2 | $x^{9} + 6 x^{5} + 3 x^{3} + 3$ | $9$ | $1$ | $13$ | $C_3^2 : D_{6} $ | $[3/2, 3/2, 5/3]_{2}^{2}$ | |
| 3.9.13.2 | $x^{9} + 6 x^{5} + 3 x^{3} + 3$ | $9$ | $1$ | $13$ | $C_3^2 : D_{6} $ | $[3/2, 3/2, 5/3]_{2}^{2}$ | |
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 5.8.0.1 | $x^{8} + x^{2} - 2 x + 3$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 7 | Data not computed | ||||||
| $23$ | 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.14.0.1 | $x^{14} - x + 7$ | $1$ | $14$ | $0$ | $C_{14}$ | $[\ ]^{14}$ | |
| $59$ | 59.2.1.2 | $x^{2} + 177$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 59.6.0.1 | $x^{6} - x + 23$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 59.6.0.1 | $x^{6} - x + 23$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 59.8.0.1 | $x^{8} - x + 14$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 137 | Data not computed | ||||||
| 1033 | Data not computed | ||||||