Normalized defining polynomial
\( x^{22} - 158 x^{20} + 5799 x^{18} + 192426 x^{16} - 14130840 x^{14} + 106875912 x^{12} + 5499758880 x^{10} - 91451924736 x^{8} - 54779058171 x^{6} + 6739137357122 x^{4} - 19818898708405 x^{2} - 18485391608046 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(121521793204922702401925547871513287519587064054154046165862083482052135980296415200485327438880728653234176=2^{71}\cdot 3^{20}\cdot 11\cdot 337^{8}\cdot 4789\cdot 310501^{8}\cdot 19494793\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $73{,}702.85$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11, 337, 4789, 310501, 19494793$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{19} - \frac{1}{2} a^{3}$, $\frac{1}{57887320607168480035725746532474501690526662399435613406516} a^{20} - \frac{2950442336895763005424408194123522436283571976756718491425}{57887320607168480035725746532474501690526662399435613406516} a^{18} - \frac{7864068360572039251029411324710714993048521691821898838061}{28943660303584240017862873266237250845263331199717806703258} a^{16} + \frac{394628689472948792402517949688862661350232187854982068495}{14471830151792120008931436633118625422631665599858903351629} a^{14} - \frac{6491232988242494561591497469540147509817851218635449926848}{14471830151792120008931436633118625422631665599858903351629} a^{12} + \frac{379479944499403111464025246751598608579032886983333304630}{14471830151792120008931436633118625422631665599858903351629} a^{10} + \frac{1712055329964228154619011588592338376355269556820087867485}{14471830151792120008931436633118625422631665599858903351629} a^{8} + \frac{6665730580054876086478648920975304229722129469638265792334}{14471830151792120008931436633118625422631665599858903351629} a^{6} - \frac{28268327301576765177633202998451644372891321806113100005183}{57887320607168480035725746532474501690526662399435613406516} a^{4} - \frac{20340117148558599765493003641515711915227634526496937886781}{57887320607168480035725746532474501690526662399435613406516} a^{2} - \frac{355297054274060653207354539590737003099606590089302394393}{2631241845780385456169352115112477349569393745428891518478}$, $\frac{1}{173661961821505440107177239597423505071579987198306840219548} a^{21} + \frac{25993217966688477012438465072113728408979759222961088211833}{173661961821505440107177239597423505071579987198306840219548} a^{19} + \frac{7026530647670733588944487313842178617404936502631969288399}{28943660303584240017862873266237250845263331199717806703258} a^{17} + \frac{4955486280421689600444651527602496027993965929237961806708}{14471830151792120008931436633118625422631665599858903351629} a^{15} + \frac{2660199054516541815779979721192825970937938127074484474927}{14471830151792120008931436633118625422631665599858903351629} a^{13} - \frac{4697450069097572299155803795455675604684210904291856682333}{14471830151792120008931436633118625422631665599858903351629} a^{11} + \frac{570685109988076051539670529530779458785089852273362622495}{14471830151792120008931436633118625422631665599858903351629} a^{9} + \frac{2221910193351625362159549640325101409907376489879421930778}{14471830151792120008931436633118625422631665599858903351629} a^{7} - \frac{28718549302915081737786316510308715354472661401849571137233}{57887320607168480035725746532474501690526662399435613406516} a^{5} + \frac{66490863762194120288095616157196040620562359072656482222993}{173661961821505440107177239597423505071579987198306840219548} a^{3} - \frac{2986538900054446109376706654703214352669000335518193912871}{7893725537341156368508056345337432048708181236286674555434} a$
Class group and class number
Not computed
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 16220160 |
| The 104 conjugacy class representatives for t22n44 are not computed |
| Character table for t22n44 is not computed |
Intermediate fields
| 11.11.118769262421915560193703211428553337469927424.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $16{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{3}$ | $22$ | R | ${\href{/LocalNumberField/13.11.0.1}{11} }^{2}$ | $16{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | $16{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.9.10.1 | $x^{9} + 3 x^{2} + 3$ | $9$ | $1$ | $10$ | $C_3^2:Q_8$ | $[5/4, 5/4]_{4}^{2}$ | |
| 3.9.10.1 | $x^{9} + 3 x^{2} + 3$ | $9$ | $1$ | $10$ | $C_3^2:Q_8$ | $[5/4, 5/4]_{4}^{2}$ | |
| $11$ | $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 11.8.0.1 | $x^{8} + x^{2} - 2 x + 6$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 337 | Data not computed | ||||||
| 4789 | Data not computed | ||||||
| 310501 | Data not computed | ||||||
| 19494793 | Data not computed | ||||||