Normalized defining polynomial
\( x^{22} - 44 x^{20} - 88 x^{19} + 308 x^{18} + 1188 x^{17} + 616 x^{16} - 8052 x^{15} - 12188 x^{14} + 41448 x^{13} + 24640 x^{12} - 126200 x^{11} + 70840 x^{10} + 100672 x^{9} - 139040 x^{8} + 236368 x^{7} - 144144 x^{6} - 281600 x^{5} + 293568 x^{4} - 36608 x^{3} - 25344 x^{2} + 5984 x - 160 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(118820147198367240060866292411611073216512=2^{26}\cdot 7^{11}\cdot 11^{23}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $73.63$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{4} a^{9}$, $\frac{1}{4} a^{10}$, $\frac{1}{4} a^{11}$, $\frac{1}{4} a^{12}$, $\frac{1}{4} a^{13}$, $\frac{1}{8} a^{14}$, $\frac{1}{8} a^{15}$, $\frac{1}{8} a^{16}$, $\frac{1}{8} a^{17}$, $\frac{1}{16} a^{18}$, $\frac{1}{16} a^{19}$, $\frac{1}{16} a^{20}$, $\frac{1}{56974120254438008036368364563818435515091712578032} a^{21} + \frac{805665702657119143707411904475005124650389313241}{56974120254438008036368364563818435515091712578032} a^{20} - \frac{375020275745196111640816407323440328469415350001}{28487060127219004018184182281909217757545856289016} a^{19} - \frac{631702554271615784780607841246593199355219481893}{56974120254438008036368364563818435515091712578032} a^{18} + \frac{259045938093395650622331857847508155594971217747}{14243530063609502009092091140954608878772928144508} a^{17} - \frac{807221560131035345192116497334213325037536133291}{28487060127219004018184182281909217757545856289016} a^{16} - \frac{1445280560867232534228097816073381642111607821355}{28487060127219004018184182281909217757545856289016} a^{15} - \frac{895051608235076099336055229751265488037115537907}{28487060127219004018184182281909217757545856289016} a^{14} - \frac{270298257146172900381713127390312974246826121074}{3560882515902375502273022785238652219693232036127} a^{13} + \frac{1408212164501274599317050628501524862725194140825}{14243530063609502009092091140954608878772928144508} a^{12} + \frac{939497197947121494661155195146367384198805358961}{14243530063609502009092091140954608878772928144508} a^{11} + \frac{5796888580084120207888606164714641717329794252}{187414869258019763277527515012560643141749054533} a^{10} - \frac{119574596046735455211532244191368415336261132338}{3560882515902375502273022785238652219693232036127} a^{9} + \frac{743690771095001499829406448892335556502878548831}{7121765031804751004546045570477304439386464072254} a^{8} - \frac{530207852454094452384422347522085861897621439081}{7121765031804751004546045570477304439386464072254} a^{7} - \frac{326964183247142547216234842685597327446398634261}{3560882515902375502273022785238652219693232036127} a^{6} - \frac{31619549352281090779896277355290175762429299505}{3560882515902375502273022785238652219693232036127} a^{5} - \frac{249391700595835939658052769259010511134851343038}{3560882515902375502273022785238652219693232036127} a^{4} - \frac{1650270657940526106772248322856734515317653565636}{3560882515902375502273022785238652219693232036127} a^{3} - \frac{1168621536750552671793591553555582617260702873065}{3560882515902375502273022785238652219693232036127} a^{2} + \frac{746459797796181071868525342696635226087352078050}{3560882515902375502273022785238652219693232036127} a + \frac{1152998855565138902318404400374979734574471236051}{3560882515902375502273022785238652219693232036127}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11248587363200 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 112640 |
| The 44 conjugacy class representatives for t22n35 |
| Character table for t22n35 is not computed |
Intermediate fields
| 11.11.4910318845910094848.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | $20{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | $20{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $7$ | 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.10.5.1 | $x^{10} - 98 x^{6} + 2401 x^{2} - 268912$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 7.10.5.1 | $x^{10} - 98 x^{6} + 2401 x^{2} - 268912$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 11 | Data not computed | ||||||