Normalized defining polynomial
\( x^{22} - 33 x^{20} + 363 x^{18} - 484 x^{17} - 2959 x^{16} + 7524 x^{15} + 27676 x^{14} - 19228 x^{13} - 69872 x^{12} + 263964 x^{11} + 670384 x^{10} - 603768 x^{9} - 3185732 x^{8} - 2479356 x^{7} + 1671351 x^{6} + 2734556 x^{5} + 459613 x^{4} - 635404 x^{3} - 289971 x^{2} - 21428 x + 4351 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(11061075521011641256575189402680885361246208=2^{36}\cdot 7^{11}\cdot 11^{22}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $90.48$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{16} - \frac{1}{2}$, $\frac{1}{2} a^{17} - \frac{1}{2} a$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{19} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{20} - \frac{1}{2} a^{4}$, $\frac{1}{574925262032944691724118917135714844262574573187420848705868} a^{21} + \frac{79785182230599110483611296024240328074010780677482607465349}{574925262032944691724118917135714844262574573187420848705868} a^{20} - \frac{11691529758027996457351843626216975355504089254785187923011}{143731315508236172931029729283928711065643643296855212176467} a^{19} - \frac{27330112209426457449999848877399867870509839963513460604783}{143731315508236172931029729283928711065643643296855212176467} a^{18} + \frac{111702158694899132634098383556634285756079887852938550895945}{574925262032944691724118917135714844262574573187420848705868} a^{17} + \frac{106388621132959363180032427100689758343812503645386014659917}{574925262032944691724118917135714844262574573187420848705868} a^{16} + \frac{24165337565578459341141377431004143522545538297184196913066}{143731315508236172931029729283928711065643643296855212176467} a^{15} - \frac{34332964898951433106730126295541959881302879753965848901176}{143731315508236172931029729283928711065643643296855212176467} a^{14} - \frac{1669438497644660434422973534120858735943782622284141956673}{143731315508236172931029729283928711065643643296855212176467} a^{13} - \frac{49620524506229738040055047064384358726775971750351817936535}{287462631016472345862059458567857422131287286593710424352934} a^{12} - \frac{6755547393099281545465347313347028188691896604920850260013}{143731315508236172931029729283928711065643643296855212176467} a^{11} + \frac{104778695502743100636981000491475274644322880183689621873725}{287462631016472345862059458567857422131287286593710424352934} a^{10} + \frac{4862044512840251433898013732250564001912413781826243246332}{143731315508236172931029729283928711065643643296855212176467} a^{9} - \frac{11962989580524756920141556525917743353997476518485817658928}{143731315508236172931029729283928711065643643296855212176467} a^{8} + \frac{37452833226347079880168451271807290617199596212848512714759}{143731315508236172931029729283928711065643643296855212176467} a^{7} + \frac{71699631040342141951117231929791049667105405649671362919023}{143731315508236172931029729283928711065643643296855212176467} a^{6} + \frac{64087171123052093663170988170907434251650541411817696632799}{574925262032944691724118917135714844262574573187420848705868} a^{5} - \frac{23098132987649722221809671103610066440361338639509489899147}{574925262032944691724118917135714844262574573187420848705868} a^{4} - \frac{28072875401130779424373385671193208431468453574601265170380}{143731315508236172931029729283928711065643643296855212176467} a^{3} + \frac{138635202813543963379141505276816888208893619409393102273583}{287462631016472345862059458567857422131287286593710424352934} a^{2} + \frac{40786594299666315661032335780212715361852499846738206398595}{574925262032944691724118917135714844262574573187420848705868} a + \frac{64208558942531533747731807740508312909444118382069450607583}{574925262032944691724118917135714844262574573187420848705868}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 282677839819000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 225280 |
| The 88 conjugacy class representatives for t22n37 are not computed |
| Character table for t22n37 is not computed |
Intermediate fields
| 11.11.4910318845910094848.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | $22$ | $20{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| 11 | Data not computed | ||||||