Normalized defining polynomial
\( x^{22} - 22 x^{20} - 22 x^{19} + 44 x^{18} + 1100 x^{17} - 264 x^{16} - 7964 x^{15} - 9768 x^{14} + 45496 x^{13} + 143198 x^{12} - 386424 x^{11} - 452100 x^{10} + 1638604 x^{9} + 70312 x^{8} - 2908488 x^{7} + 1303676 x^{6} + 2055152 x^{5} - 1542332 x^{4} - 334400 x^{3} + 455400 x^{2} - 72072 x + 2060 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(11061075521011641256575189402680885361246208=2^{36}\cdot 7^{11}\cdot 11^{22}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $90.48$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11}$, $\frac{1}{2} a^{12}$, $\frac{1}{2} a^{13}$, $\frac{1}{2} a^{14}$, $\frac{1}{2} a^{15}$, $\frac{1}{2} a^{16}$, $\frac{1}{2} a^{17}$, $\frac{1}{2} a^{18}$, $\frac{1}{2} a^{19}$, $\frac{1}{2} a^{20}$, $\frac{1}{6229937959409023786707708819892461935104198368550328962674} a^{21} - \frac{625468934346251586601389988797965656791400250223626760109}{6229937959409023786707708819892461935104198368550328962674} a^{20} + \frac{231642293630491942991122946911378581139243114778731127869}{1038322993234837297784618136648743655850699728091721493779} a^{19} + \frac{620233465147107874667666220674646683277214473489190967212}{3114968979704511893353854409946230967552099184275164481337} a^{18} - \frac{427565811668497291557067308844578171909855578614734529509}{2076645986469674595569236273297487311701399456183442987558} a^{17} - \frac{1078791594086280347151323207630833198761872859692201009011}{6229937959409023786707708819892461935104198368550328962674} a^{16} - \frac{648307764665215389383401875319314413539208420773578325258}{3114968979704511893353854409946230967552099184275164481337} a^{15} + \frac{507630536361407430085790110827453948305374045417681405201}{2076645986469674595569236273297487311701399456183442987558} a^{14} + \frac{69063658369002000397622607028435174672000667411854169677}{1038322993234837297784618136648743655850699728091721493779} a^{13} + \frac{576061206194356753500171083088940704790016921677822382741}{3114968979704511893353854409946230967552099184275164481337} a^{12} + \frac{494856507037996575987172439532939475683537072091915554631}{6229937959409023786707708819892461935104198368550328962674} a^{11} - \frac{47782125176597625216531247953874756463132384286977805935}{3114968979704511893353854409946230967552099184275164481337} a^{10} - \frac{1523427389700545971071573373360116801950241496023533707357}{3114968979704511893353854409946230967552099184275164481337} a^{9} - \frac{311171961849298766062764729069650539216832629271319822974}{1038322993234837297784618136648743655850699728091721493779} a^{8} - \frac{853576570298546615169990600854222554620933069304489527382}{3114968979704511893353854409946230967552099184275164481337} a^{7} + \frac{474670973656787215081783835766432013130740276270203904180}{3114968979704511893353854409946230967552099184275164481337} a^{6} - \frac{383032940178211967849099666279132195472245234497636389178}{1038322993234837297784618136648743655850699728091721493779} a^{5} - \frac{1484970160575587500707689513951021461126658719042897008338}{3114968979704511893353854409946230967552099184275164481337} a^{4} + \frac{321453403958329081948902460933625980601155430913887277361}{3114968979704511893353854409946230967552099184275164481337} a^{3} + \frac{221916598452654327036362758861118880705854421873540953848}{3114968979704511893353854409946230967552099184275164481337} a^{2} - \frac{876210672218400328777654048991771888899782731554444195258}{3114968979704511893353854409946230967552099184275164481337} a + \frac{171133059051538643304449468047136674112214863186252472802}{3114968979704511893353854409946230967552099184275164481337}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 506224991821000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 225280 |
| The 88 conjugacy class representatives for t22n37 are not computed |
| Character table for t22n37 is not computed |
Intermediate fields
| 11.11.4910318845910094848.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | $22$ | $20{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $7$ | 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.10.5.1 | $x^{10} - 98 x^{6} + 2401 x^{2} - 268912$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 7.10.5.1 | $x^{10} - 98 x^{6} + 2401 x^{2} - 268912$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 11 | Data not computed | ||||||