Normalized defining polynomial
\( x^{22} - 33 x^{20} + 385 x^{18} - 2057 x^{16} + 6754 x^{14} - 18106 x^{12} - 3800 x^{11} + 27874 x^{10} - 19008 x^{9} - 43450 x^{8} + 58608 x^{7} + 18909 x^{6} - 30800 x^{5} - 2629 x^{4} + 4488 x^{3} + 253 x^{2} - 176 x - 13 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[14, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1086355631527929051985063244906158383693824=2^{32}\cdot 7^{10}\cdot 11^{23}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $81.42$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{8} - \frac{1}{4} a^{4} + \frac{1}{4}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{9} - \frac{1}{4} a^{5} + \frac{1}{4} a$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{10} - \frac{1}{4} a^{6} + \frac{1}{4} a^{2}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} + \frac{1}{4} a^{2} + \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{8} a^{16} - \frac{1}{4} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{3}{8}$, $\frac{1}{8} a^{17} - \frac{1}{4} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{3}{8} a - \frac{1}{2}$, $\frac{1}{8} a^{18} - \frac{1}{4} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} + \frac{1}{8} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{8} a^{19} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{8} a^{3} + \frac{1}{4} a^{2} - \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{8} a^{20} - \frac{1}{4} a^{8} - \frac{1}{2} a^{5} + \frac{3}{8} a^{4} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{306196816064696835128022485912143036760} a^{21} + \frac{4159874864305660662598718991614051219}{76549204016174208782005621478035759190} a^{20} - \frac{6944851994470734366741679268880514607}{306196816064696835128022485912143036760} a^{19} - \frac{4728183780296151225182904268220272671}{153098408032348417564011242956071518380} a^{18} - \frac{3211793000779776662397591672462377377}{306196816064696835128022485912143036760} a^{17} - \frac{1623500718458657450519036031886316469}{38274602008087104391002810739017879595} a^{16} - \frac{19053080210512802970057924713144594027}{153098408032348417564011242956071518380} a^{15} - \frac{12671971454421417595761922842743765837}{153098408032348417564011242956071518380} a^{14} - \frac{2829476463298720157458677102015239751}{30619681606469683512802248591214303676} a^{13} + \frac{1009078265913473550817684314053587129}{30619681606469683512802248591214303676} a^{12} + \frac{5736614058613320465857244047981248931}{76549204016174208782005621478035759190} a^{11} + \frac{10797724699039759182304393692365275307}{153098408032348417564011242956071518380} a^{10} - \frac{30275490533633701227921968345669069751}{153098408032348417564011242956071518380} a^{9} + \frac{1742728474403544269577093951648520221}{30619681606469683512802248591214303676} a^{8} + \frac{1129424078537150197485597542637934731}{30619681606469683512802248591214303676} a^{7} - \frac{11620529874317852308360029436807031771}{153098408032348417564011242956071518380} a^{6} - \frac{36794783797488120960622266173594226503}{306196816064696835128022485912143036760} a^{5} + \frac{53420274408879470724504278402419184531}{153098408032348417564011242956071518380} a^{4} - \frac{93886855993913026454375804442794958957}{306196816064696835128022485912143036760} a^{3} - \frac{5936574936590579291697278093005233428}{38274602008087104391002810739017879595} a^{2} - \frac{83408025185705331438425939671933223661}{306196816064696835128022485912143036760} a - \frac{50382893378520911185136254490651842071}{153098408032348417564011242956071518380}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 67225391241000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 225280 |
| The 88 conjugacy class representatives for t22n37 are not computed |
| Character table for t22n37 is not computed |
Intermediate fields
| 11.11.4910318845910094848.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | $20{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | $20{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | $20{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 7.10.5.1 | $x^{10} - 98 x^{6} + 2401 x^{2} - 268912$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 7.10.5.1 | $x^{10} - 98 x^{6} + 2401 x^{2} - 268912$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 11 | Data not computed | ||||||