Normalized defining polynomial
\( x^{22} - 10 x^{21} + 20 x^{20} + 295 x^{19} - 1895 x^{18} + 1995 x^{17} + 22770 x^{16} - 99795 x^{15} + 84840 x^{14} + 441805 x^{13} - 1764685 x^{12} + 2660015 x^{11} + 1421125 x^{10} - 12108650 x^{9} + 18753225 x^{8} - 11528325 x^{7} - 2371350 x^{6} + 9223500 x^{5} - 6317350 x^{4} + 1656550 x^{3} + 182800 x^{2} - 138400 x - 11575 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-7395260986150565934231539871597290039062500=-\,2^{2}\cdot 3^{20}\cdot 5^{20}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $88.84$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{5} a^{11}$, $\frac{1}{5} a^{12}$, $\frac{1}{5} a^{13}$, $\frac{1}{5} a^{14}$, $\frac{1}{5} a^{15}$, $\frac{1}{5} a^{16}$, $\frac{1}{55} a^{17} + \frac{2}{55} a^{16} + \frac{4}{55} a^{15} - \frac{4}{55} a^{14} + \frac{4}{55} a^{12} - \frac{1}{11} a^{11} - \frac{4}{11} a^{10} - \frac{3}{11} a^{9} - \frac{5}{11} a^{8} - \frac{1}{11} a^{7} - \frac{2}{11} a^{6} - \frac{1}{11} a^{5} + \frac{3}{11} a^{4} - \frac{1}{11} a^{2} - \frac{3}{11} a + \frac{5}{11}$, $\frac{1}{55} a^{18} - \frac{1}{55} a^{15} - \frac{3}{55} a^{14} + \frac{4}{55} a^{13} - \frac{2}{55} a^{12} + \frac{1}{55} a^{11} + \frac{5}{11} a^{10} + \frac{1}{11} a^{9} - \frac{2}{11} a^{8} + \frac{3}{11} a^{6} + \frac{5}{11} a^{5} + \frac{5}{11} a^{4} - \frac{1}{11} a^{3} - \frac{1}{11} a^{2} + \frac{1}{11}$, $\frac{1}{55} a^{19} - \frac{1}{55} a^{16} - \frac{3}{55} a^{15} + \frac{4}{55} a^{14} - \frac{2}{55} a^{13} + \frac{1}{55} a^{12} + \frac{3}{55} a^{11} + \frac{1}{11} a^{10} - \frac{2}{11} a^{9} + \frac{3}{11} a^{7} + \frac{5}{11} a^{6} + \frac{5}{11} a^{5} - \frac{1}{11} a^{4} - \frac{1}{11} a^{3} + \frac{1}{11} a$, $\frac{1}{55} a^{20} - \frac{1}{55} a^{16} - \frac{3}{55} a^{15} + \frac{1}{11} a^{14} + \frac{1}{55} a^{13} - \frac{4}{55} a^{12} + \frac{5}{11} a^{10} - \frac{3}{11} a^{9} - \frac{2}{11} a^{8} + \frac{4}{11} a^{7} + \frac{3}{11} a^{6} - \frac{2}{11} a^{5} + \frac{2}{11} a^{4} - \frac{3}{11} a + \frac{5}{11}$, $\frac{1}{863115382020589392642500915128581461542746838618817161202959622214335} a^{21} + \frac{613727512594372203877566909256770421319894511284090782195909252415}{172623076404117878528500183025716292308549367723763432240591924442867} a^{20} + \frac{6486318496062563954172338387052380103784237085670343407538077641289}{863115382020589392642500915128581461542746838618817161202959622214335} a^{19} - \frac{5282846129455752585968752191293817394871836604003822624110785014393}{863115382020589392642500915128581461542746838618817161202959622214335} a^{18} + \frac{1964260162052566206983931034205726837923971711666459934085383037789}{863115382020589392642500915128581461542746838618817161202959622214335} a^{17} - \frac{54782639825169916329667051569431272752026437448909217792280391402326}{863115382020589392642500915128581461542746838618817161202959622214335} a^{16} - \frac{12034815061587888538435311215782846243780743012281852869755747930618}{863115382020589392642500915128581461542746838618817161202959622214335} a^{15} + \frac{2006560411553081202814288740283640726395297729983529591912492479692}{863115382020589392642500915128581461542746838618817161202959622214335} a^{14} - \frac{11427118639517186721584346335015132532753954481790862306229698756467}{172623076404117878528500183025716292308549367723763432240591924442867} a^{13} - \frac{40694315601895373363691520779063312100503374105663668675192841263984}{863115382020589392642500915128581461542746838618817161202959622214335} a^{12} - \frac{51273693656007127218313628019443815102970806360659561565453460688426}{863115382020589392642500915128581461542746838618817161202959622214335} a^{11} - \frac{30159325470337009969768792990210494310894413613035085966678910605236}{172623076404117878528500183025716292308549367723763432240591924442867} a^{10} + \frac{38438464725145262536915901758593774802238562343359608393657737857636}{172623076404117878528500183025716292308549367723763432240591924442867} a^{9} + \frac{25372323211220023419037549850370115215058736566252579862357368391849}{172623076404117878528500183025716292308549367723763432240591924442867} a^{8} + \frac{73441075544958246638528646606915345822357537739505041256237753993140}{172623076404117878528500183025716292308549367723763432240591924442867} a^{7} - \frac{69914654253391404944149944029927785795928257614320451142611527235992}{172623076404117878528500183025716292308549367723763432240591924442867} a^{6} + \frac{7854688314482258419151077090178579048820062343586714728547591296235}{172623076404117878528500183025716292308549367723763432240591924442867} a^{5} - \frac{5051469318406802103421702499246700379910401841811864565753620694161}{172623076404117878528500183025716292308549367723763432240591924442867} a^{4} - \frac{51238854276511812020678835029015474471530589776596324780950297625196}{172623076404117878528500183025716292308549367723763432240591924442867} a^{3} + \frac{77541417856508968236372140473767664737514448045594460158090864472089}{172623076404117878528500183025716292308549367723763432240591924442867} a^{2} + \frac{41673076251416682094781961784266414042315120042292811865402888453022}{172623076404117878528500183025716292308549367723763432240591924442867} a - \frac{47941308493951960238207154101113977478448163894125930808915842251238}{172623076404117878528500183025716292308549367723763432240591924442867}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 191819039319000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 112640 |
| The 80 conjugacy class representatives for t22n36 are not computed |
| Character table for t22n36 is not computed |
Intermediate fields
| 11.11.123610132462587890625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | $22$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | $22$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.11.10.1 | $x^{11} - 5$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ |
| 5.11.10.1 | $x^{11} - 5$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ | |
| $11$ | 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |