Normalized defining polynomial
\( x^{22} - 22 x^{20} + 220 x^{18} - 1584 x^{16} + 8448 x^{14} - 32032 x^{12} - 2852 x^{11} + 97152 x^{10} + 18084 x^{9} - 192896 x^{8} + 65120 x^{7} + 281600 x^{6} - 205568 x^{5} - 197120 x^{4} + 162272 x^{3} + 33792 x^{2} - 40128 x + 6044 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-67897226970495565749066452806634898980864=-\,2^{28}\cdot 7^{10}\cdot 11^{23}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $71.78$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11}$, $\frac{1}{2} a^{12}$, $\frac{1}{2} a^{13}$, $\frac{1}{2} a^{14}$, $\frac{1}{2} a^{15}$, $\frac{1}{2} a^{16}$, $\frac{1}{4} a^{17} - \frac{1}{2} a^{6}$, $\frac{1}{4} a^{18} - \frac{1}{2} a^{7}$, $\frac{1}{4} a^{19} - \frac{1}{2} a^{8}$, $\frac{1}{4} a^{20} - \frac{1}{2} a^{9}$, $\frac{1}{155592593128125464131332392162942711026644816363208060} a^{21} + \frac{15770239429787453125054910065141578668573274861667379}{155592593128125464131332392162942711026644816363208060} a^{20} + \frac{7760722665607516949376940165913884175804641594201549}{155592593128125464131332392162942711026644816363208060} a^{19} - \frac{1487725633672460404106047513067795489333711656586801}{38898148282031366032833098040735677756661204090802015} a^{18} + \frac{9851691369054239014926667310761425270479175438648619}{155592593128125464131332392162942711026644816363208060} a^{17} - \frac{15556076263811979022440068774061905289178743196372897}{77796296564062732065666196081471355513322408181604030} a^{16} + \frac{2593588417686473525415914215839127529934379695525315}{15559259312812546413133239216294271102664481636320806} a^{15} + \frac{1820280815311527692453693555296663244495075883693745}{15559259312812546413133239216294271102664481636320806} a^{14} - \frac{4163150082082511171671307713592385016551196704425891}{77796296564062732065666196081471355513322408181604030} a^{13} + \frac{3745587221602744971011899872110266901432001710100543}{38898148282031366032833098040735677756661204090802015} a^{12} - \frac{1622359816645243796997584748059655819479172872889781}{38898148282031366032833098040735677756661204090802015} a^{11} - \frac{37119890668419938942523566097034980452947794113981689}{77796296564062732065666196081471355513322408181604030} a^{10} - \frac{7228617179847779873884680382589113627588568872711503}{15559259312812546413133239216294271102664481636320806} a^{9} + \frac{35583943151646841742807731097562709101299968510913607}{77796296564062732065666196081471355513322408181604030} a^{8} - \frac{98122571390029241522970523570563624611435639979137}{7779629656406273206566619608147135551332240818160403} a^{7} - \frac{379864955546379483371644593373950819328432244304983}{15559259312812546413133239216294271102664481636320806} a^{6} - \frac{2001762932484272960585481383114264895631335602988771}{7779629656406273206566619608147135551332240818160403} a^{5} + \frac{2872035434029464036671309206488676149720161800053198}{38898148282031366032833098040735677756661204090802015} a^{4} + \frac{10014762664680066912487865929977381200485827523228717}{38898148282031366032833098040735677756661204090802015} a^{3} + \frac{12149654445244185766893719568727272773818813667661736}{38898148282031366032833098040735677756661204090802015} a^{2} - \frac{5073353801459860570872397964769086894934489518567063}{38898148282031366032833098040735677756661204090802015} a - \frac{4287568122550955430204380470908837404021604635318114}{38898148282031366032833098040735677756661204090802015}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9720085472130 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 225280 |
| The 88 conjugacy class representatives for t22n37 are not computed |
| Character table for t22n37 is not computed |
Intermediate fields
| 11.11.4910318845910094848.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | R | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | $20{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{7}$ | $20{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $7$ | 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 7.10.5.1 | $x^{10} - 98 x^{6} + 2401 x^{2} - 268912$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 7.10.5.1 | $x^{10} - 98 x^{6} + 2401 x^{2} - 268912$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 11 | Data not computed | ||||||