Normalized defining polynomial
\( x^{22} - 2 x^{20} - 73 x^{18} + 332 x^{16} - 46 x^{14} - 1522 x^{12} + 1480 x^{10} + 1528 x^{8} - 1814 x^{6} - 620 x^{4} + 584 x^{2} + 121 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-56501459388151144478039723653407440896=-\,2^{22}\cdot 1297^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $52.00$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 1297$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{5} a^{14} - \frac{2}{5} a^{12} - \frac{1}{5} a^{10} - \frac{2}{5} a^{8} - \frac{2}{5} a^{4} + \frac{2}{5} a^{2} - \frac{2}{5}$, $\frac{1}{5} a^{15} - \frac{2}{5} a^{13} - \frac{1}{5} a^{11} - \frac{2}{5} a^{9} - \frac{2}{5} a^{5} + \frac{2}{5} a^{3} - \frac{2}{5} a$, $\frac{1}{5} a^{16} + \frac{1}{5} a^{10} + \frac{1}{5} a^{8} - \frac{2}{5} a^{6} - \frac{2}{5} a^{4} + \frac{2}{5} a^{2} + \frac{1}{5}$, $\frac{1}{55} a^{17} + \frac{1}{55} a^{15} - \frac{7}{55} a^{13} + \frac{19}{55} a^{9} - \frac{2}{55} a^{7} - \frac{24}{55} a^{5} - \frac{1}{55} a^{3} + \frac{4}{55} a$, $\frac{1}{55} a^{18} + \frac{1}{55} a^{16} + \frac{4}{55} a^{14} - \frac{2}{5} a^{12} + \frac{8}{55} a^{10} - \frac{24}{55} a^{8} - \frac{24}{55} a^{6} - \frac{23}{55} a^{4} + \frac{26}{55} a^{2} - \frac{2}{5}$, $\frac{1}{55} a^{19} + \frac{3}{55} a^{15} - \frac{3}{11} a^{13} + \frac{8}{55} a^{11} + \frac{12}{55} a^{9} - \frac{2}{5} a^{7} + \frac{1}{55} a^{5} + \frac{27}{55} a^{3} - \frac{26}{55} a$, $\frac{1}{76500495335} a^{20} - \frac{325650946}{76500495335} a^{18} - \frac{3840639981}{76500495335} a^{16} - \frac{1325621458}{15300099067} a^{14} - \frac{15131669908}{76500495335} a^{12} - \frac{18981675323}{76500495335} a^{10} - \frac{16779739274}{76500495335} a^{8} + \frac{2045357531}{6954590485} a^{6} - \frac{28062072732}{76500495335} a^{4} + \frac{3743181127}{15300099067} a^{2} - \frac{2890294274}{6954590485}$, $\frac{1}{76500495335} a^{21} - \frac{325650946}{76500495335} a^{19} + \frac{6038442}{1390918097} a^{17} - \frac{223213909}{6954590485} a^{15} + \frac{6431909078}{15300099067} a^{13} - \frac{18981675323}{76500495335} a^{11} - \frac{2799580616}{15300099067} a^{9} + \frac{14153424259}{76500495335} a^{7} + \frac{24792814954}{76500495335} a^{5} + \frac{14543151344}{76500495335} a^{3} - \frac{3020443970}{15300099067} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 128912831300 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 45056 |
| The 200 conjugacy class representatives for t22n32 are not computed |
| Character table for t22n32 is not computed |
Intermediate fields
| 11.11.3670285774226257.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $22$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{11}$ | ${\href{/LocalNumberField/13.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | $22$ | $22$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{11}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 1297 | Data not computed | ||||||