Normalized defining polynomial
\( x^{22} - 7 x^{20} - 6 x^{18} + 95 x^{16} - 21 x^{14} - 397 x^{12} + 82 x^{10} + 581 x^{8} + 43 x^{6} - 160 x^{4} - 27 x^{2} + 1 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-56501459388151144478039723653407440896=-\,2^{22}\cdot 1297^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $52.00$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 1297$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{5423} a^{18} + \frac{67}{493} a^{16} + \frac{756}{5423} a^{14} + \frac{393}{5423} a^{12} - \frac{1085}{5423} a^{10} + \frac{2438}{5423} a^{8} + \frac{40}{493} a^{6} + \frac{294}{5423} a^{4} + \frac{40}{493} a^{2} - \frac{829}{5423}$, $\frac{1}{5423} a^{19} + \frac{67}{493} a^{17} + \frac{756}{5423} a^{15} + \frac{393}{5423} a^{13} - \frac{1085}{5423} a^{11} + \frac{2438}{5423} a^{9} + \frac{40}{493} a^{7} + \frac{294}{5423} a^{5} + \frac{40}{493} a^{3} - \frac{829}{5423} a$, $\frac{1}{2152931} a^{20} + \frac{61}{2152931} a^{18} + \frac{467838}{2152931} a^{16} - \frac{61939}{126643} a^{14} - \frac{928359}{2152931} a^{12} + \frac{692514}{2152931} a^{10} + \frac{402246}{2152931} a^{8} - \frac{432721}{2152931} a^{6} + \frac{213844}{2152931} a^{4} + \frac{162686}{2152931} a^{2} - \frac{204239}{2152931}$, $\frac{1}{2152931} a^{21} + \frac{61}{2152931} a^{19} + \frac{467838}{2152931} a^{17} - \frac{61939}{126643} a^{15} - \frac{928359}{2152931} a^{13} + \frac{692514}{2152931} a^{11} + \frac{402246}{2152931} a^{9} - \frac{432721}{2152931} a^{7} + \frac{213844}{2152931} a^{5} + \frac{162686}{2152931} a^{3} - \frac{204239}{2152931} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 98774417571.6 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 45056 |
| The 200 conjugacy class representatives for t22n32 are not computed |
| Character table for t22n32 is not computed |
Intermediate fields
| 11.11.3670285774226257.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $22$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | $22$ | $22$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{5}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 1297 | Data not computed | ||||||