Normalized defining polynomial
\( x^{22} + 3 x^{20} - 660 x^{18} - 3030 x^{16} + 54675 x^{14} + 25956 x^{12} - 596682 x^{10} - 780705 x^{8} + 214110 x^{6} + 207900 x^{4} - 27891 x^{2} + 27 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-46938516011269707747849773730468750000000000=-\,2^{10}\cdot 3^{21}\cdot 5^{20}\cdot 11^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $96.62$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8}$, $\frac{1}{3} a^{9}$, $\frac{1}{3} a^{10}$, $\frac{1}{3} a^{11}$, $\frac{1}{15} a^{12} - \frac{2}{15} a^{10} + \frac{1}{5} a^{2} - \frac{2}{5}$, $\frac{1}{15} a^{13} - \frac{2}{15} a^{11} + \frac{1}{5} a^{3} - \frac{2}{5} a$, $\frac{1}{15} a^{14} + \frac{1}{15} a^{10} + \frac{1}{5} a^{4} + \frac{1}{5}$, $\frac{1}{45} a^{15} + \frac{2}{15} a^{11} + \frac{2}{5} a^{5} + \frac{2}{5} a$, $\frac{1}{90} a^{16} - \frac{1}{30} a^{14} - \frac{1}{30} a^{13} - \frac{1}{30} a^{12} - \frac{1}{10} a^{11} - \frac{1}{6} a^{10} - \frac{1}{2} a^{7} + \frac{1}{5} a^{6} - \frac{1}{2} a^{5} + \frac{2}{5} a^{4} - \frac{1}{10} a^{3} + \frac{2}{5} a^{2} + \frac{1}{5} a - \frac{1}{2}$, $\frac{1}{90} a^{17} - \frac{1}{90} a^{15} - \frac{1}{30} a^{14} - \frac{1}{30} a^{13} - \frac{1}{30} a^{12} - \frac{1}{30} a^{11} - \frac{2}{15} a^{10} - \frac{1}{6} a^{8} + \frac{1}{5} a^{7} - \frac{1}{2} a^{6} - \frac{1}{5} a^{5} - \frac{1}{10} a^{4} + \frac{2}{5} a^{3} + \frac{2}{5} a^{2} - \frac{1}{10} a - \frac{2}{5}$, $\frac{1}{90} a^{18} - \frac{1}{90} a^{15} + \frac{1}{10} a^{11} + \frac{1}{10} a^{10} - \frac{1}{6} a^{9} - \frac{2}{15} a^{8} - \frac{1}{5} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{5} a + \frac{3}{10}$, $\frac{1}{90} a^{19} - \frac{1}{30} a^{14} - \frac{1}{30} a^{13} + \frac{2}{15} a^{10} - \frac{2}{15} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{10} a^{4} + \frac{2}{5} a^{3} - \frac{1}{2} a - \frac{1}{10}$, $\frac{1}{338873208986095538563860390} a^{20} - \frac{309759302581913638265474}{169436604493047769281930195} a^{18} - \frac{50936166752891520507577}{169436604493047769281930195} a^{16} - \frac{1}{90} a^{15} + \frac{3376495971806972314208807}{112957736328698512854620130} a^{14} - \frac{245896091704668606066841}{56478868164349256427310065} a^{12} - \frac{1}{15} a^{11} + \frac{8033950184424143593445129}{56478868164349256427310065} a^{10} - \frac{3878935537043461780678573}{112957736328698512854620130} a^{8} + \frac{4178696220987854865713717}{37652578776232837618206710} a^{6} + \frac{3}{10} a^{5} - \frac{1768243276926845714546609}{18826289388116418809103355} a^{4} - \frac{2058696841436513618090507}{37652578776232837618206710} a^{2} + \frac{3}{10} a + \frac{2180699555152579935870801}{18826289388116418809103355}$, $\frac{1}{338873208986095538563860390} a^{21} - \frac{309759302581913638265474}{169436604493047769281930195} a^{19} - \frac{50936166752891520507577}{169436604493047769281930195} a^{17} + \frac{2598972160174349418985079}{338873208986095538563860390} a^{15} - \frac{1}{30} a^{14} + \frac{1091155231404648849895663}{37652578776232837618206710} a^{13} - \frac{1}{30} a^{12} + \frac{12302642491225003425069587}{112957736328698512854620130} a^{11} + \frac{1}{30} a^{10} - \frac{3878935537043461780678573}{112957736328698512854620130} a^{9} - \frac{7323796583564281971694819}{18826289388116418809103355} a^{7} - \frac{1}{2} a^{6} + \frac{228771323769592332727453}{37652578776232837618206710} a^{5} + \frac{2}{5} a^{4} + \frac{853280518093385071865082}{18826289388116418809103355} a^{3} - \frac{1}{10} a^{2} - \frac{9115074077717271349591212}{18826289388116418809103355} a + \frac{1}{10}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 427496384037000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 112640 |
| The 80 conjugacy class representatives for t22n36 are not computed |
| Character table for t22n36 is not computed |
Intermediate fields
| 11.11.123610132462587890625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.10.10.1 | $x^{10} - 9 x^{8} + 54 x^{6} - 38 x^{4} + 41 x^{2} - 17$ | $2$ | $5$ | $10$ | $C_2^4 : C_5$ | $[2, 2, 2, 2]^{5}$ | |
| 2.10.0.1 | $x^{10} - x^{3} + 1$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $11$ | 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |